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1
Using Coherence Assumptions

to Discover the Underlying Causes
of the Sensory Input

G.E. Hinton and S. Becker

This chapter is based on a conference talk given by the first author. In
order to make the ideas as intelligible as possible we have attempted to
preserve the informal style of the talk. Some of the more technical de-
tails can be found in Hinton and Becker (1990), and the full details are
given in Becker and Hinton (1989).

Introduction to Neural Network Learning Procedures

During the last decade people have discovered new learning proce-
dures for multi-layer networks of simple neuron-like units. Using these
new procedures they have succeeded in getting neural networks to
solve much more complicated tasks than was previously possible.

Supervised learning

The kind of learning procedure that has been most successful is called
supervised learning. A multilayer network of the kind shown in Figure
1.1 is presented with an input vector at the bottom layer, which typical-
ly represents something like preprocessed sensory data. At the top lay-
er, we want the network to produce an output vector that represents the
correct response to the input vector. This response is often a classifica-
tion in which one of the output units is active and the rest are silent, but
other more complex kinds of response can also be learned. During
training we tell the network the correct output vector for each input
vector, and the aim of the learning is to reduce the difference between
the actual output vector produced by the network and the desired out-
put vector. This is achieved by gradually modifying all the weights in
the network in the appropriate direction. For each training case an
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algorithm called back-propagation (Rumelhart, Hinton, and Williams
1986) can be used to determine how much a change in a weight will
change the discrepancy between the actual and the desired output vec-
tors. A simple learning procedure called 'steepest descent' is then used
to update the weights. Each weight is modified in proportion to how
rapidly a change in the weight reduces the squared difference between
the actual and desired output vectors.

After learning, we hope that the network will do more than just give
the correct outputs for the training cases. We hope that when we give it
an input vector that it has never seen before it will generalize correctly
and will therefore give the correct output vector. There has been a lot of
progress, both empirical and theoretical (Baum and Haussler 1989), in
achieving good generalization. So far, supervised learning has been
much more successful than the methods described below. But it is not
very plausible as a model of most human learning, because it requires
a teacher and because the learning speed is much too slow in very large
networks. Also, it is hard to see how to implement anything like the
back-propagation process in real neural networks. The naive idea of us-
ing the same connections in the opposite direction is certainly wrong.

Figure 1.1: A typical multilayer neural network that can be trained to transform input
vectors into the desired output vectors. The network learns by adjusting the weights
on the connections.

Connectionism:  Theory  and Practice
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Reinforcement learning

There is another kind of learning procedure, called reinforcement learn-
ing, where we do not tell the network the right answer. We just tell it
how good its answer is. Typically, we interpret the output vector as a
command to perform some action, and then we tell it how good that ac-
tion was under these circumstances. Using this reinforcement signal,
we try to train the network so that it learns weights that make it perform
the actions with the highest payoffs. It is easier to see how this kind of
learning could be implemented in a real neural network, but reinforce-
ment learning has been less successful in practice than has supervised
learning, and we will not say any more about it here.

Unsupervised learning

There is a third kind of learning procedure, called unsupervised learn-
ing, that is the subject of this chapter. In unsupervised learning a net-
work just looks at the world, and, without any further instructions, it
constructs an internal representation. Clearly, if we could get this kind
of learning to work it would be fascinating. Some people believe that
the whole idea is preposterous because it is impossible to know what is
worth representing until we know what the task is. This objection is su-
perficially reasonable but deeply wrong. It is wrong because it ignores
the fact that if two representations capture the data equally well, but
one representation has much lower complexity than does the other,
then the lower complexity representation is objectively better. Natural-
ly, it is possible to raise endless philosophical objections to this com-
monsense argument. We think that the simplest way to show that it is
possible to construct sensible internal representations without any su-
pervision or reinforcement is simply to build systems that do it.

If we think of learning as altering the weights in a network so as to
achieve something, it is clear that the big problem with unsupervised
learning is the question of what we are trying to achieve. This chapter
proposes an answer to that question: The learning is trying to achieve
significant agreement between the outputs of different modules that
look at different parts of the input. We show that by reaching agreement
the modules can internally reconstruct the real external causes of the in-
put. This may be of some interest to philosophers (and even sociolo-
gists), because it can be viewed as the social construction of objective
reality. Provided the members of the society operate on different inputs,
the only things they can non-trivially agree upon are the common caus-
es of their different inputs. The difficulties come in getting this idea to
actually work.



Figure 1.2: A sparsely connected network that illustrates how supervised learning cou-
ples all the weights together (see text).
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Why supervised learning procedures are a dead end

In the long run, the supervised learning procedures, even though they
have been very successful so far, are not going to explain how people
form their internal representations of the world. The fatal flaw of a pure
supervised learning procedure is the way in which the learning time
scales with the sizes of the network and the task. Suppose we have a
network, even a fairly loosely-coupled, tree-structured network, as
shown in Figure 1.2, where there is apparently not much interaction be-
tween separate parts of the tree.

As we make bigger and bigger networks with more and more layers
and more and more units per layer, the learning will get slower and
slower. Even for networks of fixed depth, the learning time (in a serial
simulation) is approximately proportional to the cube of the number of
connections (Hinton 1989). So even if we use separate hardware for
each connection, if we make the network a thousand times as big, it
takes a million times as long to learn. The poor scaling is caused by the
fact that the back-propagation process couples all the weights together,
even in a loosely connected network. In Figure 1.2, for example, a
change in - causes a change in the output of the network. This causes
a change in the difference between the actual and the desired output, so
it changes the error-derivatives that are back-propagated to -. So
changing - changes the way in which modifications to - affect the er-
ror. This means that when we modify all the other weights a little, the
effect of a change in 2 may be altered a lot, so a modification which
would have reduced the error if the other weights had stayed the same
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may actually increase the error a lot. The only way around this is to
make all the modifications very tiny, so learning becomes very slow.

To get good scaling, what we would really like is some way of know-
ing what one part of the network should be doing internally without
any external teacher and without any dependence on what other parts
of the network are doing. We need one piece of the network to arrive at
a good internal representation of the data solely on the basis of its
own input.

How much innate knowledge is required?

One of the main motivations of this chapter is to resolve, or at least illu-
minate, the following issue: How much innate knowledge does a sys-
tem need to have in order to be able to figure out the causes of its
sensory inputs? This is, of course, a question that philosophers have
asked. We think that this is an empirical question which cannot be an-
swered just by thinking about it. We have to try out particular learning
techniques operating in particular worlds to get a reasonable feel for
what works and what does not. It is important to take the speed of
learning into account, since, if we allow evolutionary time, it is clear
that a heap of inorganic mud (or something similar) can form complex
internal representations, and few people would attribute much innate
knowledge to a heap of mud.

There is a traditional 'empiricist' position that claims you can learn
everything starting with no innate ideas. That type of armchair empiri-
cism is quite different from the open-minded empiricist position that
claims that questions like this should be settled by building systems
and seeing what works. This chapter explores whether a particular type
of innate goal is sufficient to allow the causes of the sensory input to be
discovered in reasonable time. The innate goal might be called a 'tran-
scendental aesthetic' because the system has it before it looks at the
data, and it causes the system to prefer some representations to others.

Spatio-temporal Coherence as a Principle for
Constructing Representations

We show that a single aesthetic principle, a principle for choosing be-
tween internal representations, allows a system to discover a lot. The
principle is simply to find properties that are coherent across different
parts of the sensory input. After a brief discussion of some of the many
types of coherence, we describe one way of formalizing the idea of co-
herence and show what it can do in a few specific cases.
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There are all sorts of coherence in the sensory input that organisms re-
ceive from the real world. For example, there is coherence between vi-
sual input and tactile input. People sometimes think that this can
provide a quick solution to the mystery of how we figure out what the
visual input represents. The proposed solution is that we just reach out
and touch reality and use this 'direct' knowledge to calibrate vision. The
problem is that it is just as difficult to know what tactile stimuli repre-
sent. As we shall see, both problems can be finessed by discovering
what is common to the two modalities (and to different spatio-temporal
parts of each modality).

Another type of coherence which some people think is very special is
the coherence between the motor output and the sensory input. It is of-
ten claimed that only by acting in the world can we learn what the sen-
sory input really represents. We suspect that many of the people who
regard action as a necessary condition of objective knowledge arrive at
this view because they cannot imagine any alternative possibility.

A very informative kind of coherence is the temporal coherence be-
tween the visual input at two adjacent times. In a world of translating
and rotating rigid objects, temporally adjacent images will often contain
different projections of the very same three-dimensional shape. So a
mechanism that learns to extract the same underlying representation
from adjacent images should discover true three-dimensional shape,
because this underlying cause of the images is more coherent across
time than is the raw sensory input itself. If the objects are in free motion,
other temporal invariants include their linear and angular momenta. So
the same type of mechanism should be able to extract these fundamen-
tal physical properties, although we suspect that it will be a long time
before we can get simple learning mechanisms to make such profound
discoveries.

There is another type of coherence that people in vision have thought
about a lot - coherence between different sources of depth information.
Stereo, texture, shading, motion, and contour all provide information
about depth, so by searching for parameter values on which all these in-
formation sources can agree, it should be possible to discover depth.

In this chapter we focus on yet another type of coherence that exists
within a modality such as vision - the coherence between the sensory in-
put from nearby parts of space. In real images, nearby patches of the im-
age are usually caused by nearby parts of the surface of the same object.
So the patches of surface that give rise to nearby image patches usually
have similar depths, surface orientations, reflectances, etc. As a result,
one patch of an image typically contains a lot of information about what
is in a neighbouring patch of an image. But this mutual information be-
tween neighbouring patches is in a very messy form - given all the
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intensity values in one patch, it is very hard to predict the particular
combination of intensity values that will be found in the neighbouring
patch. Intuitively, it would be much easier to make predictions if we
first converted the raw intensities into underlying properties of surfac-
es, such as depth and surface orientation, and then predicted the depth
and orientation of one patch from the depth and orientation of its neigh-
bours. We can stand this argument on its head and say that depth, sur-
face orientation, texture etc. can be defined as those properties which are
coherent in a simple way and are, therefore, easy to predict from patch
to patch. The learning procedure works by homing in on those locally
extractable properties that are most coherent from patch to patch.

We can think about coherence in terms of probability distributions.
Suppose we consider two nearby intensity patches in an image (like
patch A and patch B in Figure 1.3). Let us suppose they are 4 x 4 patches,
so the intensities in one patch correspond to a point in a sixteen-dimen-
sional space, because they can be described by sixteen numbers. Simi-
larly, the intensities of the neighbouring patch are a point in another
sixteen-dimensional space. Now we can ask the following question: if I
tell you where A is in its sixteen-dimensional space, what can you tell
me about where B is in its sixteen-dimensional space? Obviously, you

Figure 1.3: The intensities in an image patch can be represented as points in a high dimen-
sional space. Using the obvious space in which each axis corresponds to the intensity
of one pixel, it is hard to predict the representation of patch B from the representation
of patch A. The representations are shown as + signs, and the distribution of predictions
of B from A is shown as dots. If the network can transform the raw input to a new space
that makes explicit the spatially coherent underlying causes of the input, it is much eas-
ier to predict the representation of B from the representation of A.
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cannot tell me exactly where B is because it is not completely deter-
mined by A, but, after seeing A, you should be able to guess B better
than you could if you did not see A. The problem is that the information
that A provides about B is in a terrible form. Before you see A, the prob-
ability distribution for B will have high entropy - it will be very spread
out. After seeing A, this distribution has much less entropy - it is much
less spread out, because A contains a lot of information about B. Unfor-
tunately, knowledge of A does not concentrate the distribution for B
around a single point - it concentrates it around a lot of different points,
as shown in Figure 1.4b. This makes it very hard to say anything sensi-
ble about B when given A, and it also makes it hard to represent what
A conveys about B without using an enormous sixteen-dimensional
table.
Things would be much simpler if knowledge of A caused the distribu-
tion for B to concentrate around a single point. The idea of the learning
procedure is that we can achieve this by working in a different space.
We transform the sixteen-dimensional space of the raw intensites into
some other space, in which knowledge of the representation of A has a
simple effect on the probability distribution of the representation of B.
There are many possible definitions of 'simple effect.' To begin with we
shall assume that we want the information to be in the following form:
A and B are each represented by single numbers, a and b. When a is un-
known, b has high variance, but when a is known, b has more or less the
same value as a, with a little variance that is much smaller than the vari-
ance of b before a is known. In other words, we want to find a transfor-
mation from the raw input space into a one-dimensional space in which
a and b have approximately the same value.

If we chose an arbitrary transformation, the distribution of b given a
would be no tighter than the distribution of b when a was unknown. So

Figure 1.4: A one-dimensional illustration of two different ways in which the entropy of
a distribution can be reduced, (a) has high entropy because all the possibilities are
more or less equally probable, (b) has much lower entropy because it is less uniform,
but it has many peaks, so it is hard to describe. (c) has roughly the same entropy as (b)
but is a much easier distribution to describe.
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we can search for the transformation we want by changing the weights
in a network so as to make the distribution of b given a as tight as pos-
sible relative to the distribution of b alone. In fact, to make things sym-
metrical, it is better to change the weights to optimize the following
function:

where V is the variance measured across the ensemble of different train-
ing cases. This information measure is clearly large when a and b vary
a lot from image to image, but a - b varies very little. In other words, a is
approximately equal to b relative to how much a and b vary. One advan-
tage of using this equation is that, given appropriate gaussian assump-
tions, it represents the information that a and b contain about the
common causes of the inputs A and B (see Becker and Hinton 1989
for details).

So we start with a preconceived notion of how we would like the rep-
resentation of patch A to convey information about the representation
of patch B, and we then adjust the weights so as to capture as much of
the mutual information between A and B as possible in this precon-
ceived framework. Later, we will see how the framework can be relaxed
to allow more complex types of mutual information to be captured.

An Example: Discovering Depth in Stereo-pairs

As an example of the power of the spatial coherence learning algorithm,
we are going to see how it can discover the third dimension. Unfortu-
nately, this example requires an understanding of how depth is encod-
ed in stereo images, so this needs to be explained.

A stereo-pair is a pair of images of the same scene taken from slightly
different viewpoints corresponding to the two eyes. Stereograms con-
tain information about the depths of the surfaces in the scene, because
a feature in one image is shifted sideways relative to the same feature in
the other image, and the magnitude of this shift is determined by the
depth of the feature. The shift is called the disparity of the feature and
it does not directly specify the absolute depth, because the disparity can
be altered just by moving one eye relative to the other. Simplifying the
geometry a little, disparity specifies the depth of the feature relative to
the fronto-parallel plane at which the optical axes of the two eyes con-
verge. This is called the plane of fixation. In the rest of this chapter we
use the word depth to mean depth relative to the plane of fixation, and
we assume that all the depths are small and all the images are near the
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centre of the field of view, so that depth is simply proportional to
disparity.

In a stereo-pair of a real scene, there are many other sources of infor-
mation about depth in addition to disparity. These sources include all
the various cues that allow us to perceive depth with one eye closed. To
eliminate most of these other cues, we can use 'random-dot' stereo-
grams in which we imagine that a 3-D surface is covered in random
dots, which are then imaged from two slightly different viewpoints.

If we form a random-dot stereo-pair of a surface whose depth varies
smoothly, nearby patches of the image-pair will have similar dispari-
ties. So it should be possible to discover that disparity is a property
worth extracting by simply searching for properties that have similar
values for nearby patches. Notice that the number of potential proper-
ties is huge, so to home in on disparity will probably take quite a lot of
computation.

One more technical trick must be used before we can turn the learn-
ing algorithm loose on stereo-pairs. We could use binary images in
which the dots on the surface project to white pixels and the remaining
pixels are black. Unfortunately, this makes it very hard to represent con-
tinuous gradations of depth, because a dot in one image must be shifted
by in integer number of pixels relative to a dot in the other image. So
only a discrete set of depths can be represented. Figure 1.5 shows how
we can overcome this difficulty by using real-valued intensities for the

Figure 1.5: Part of a cubic spline fitted through seven randomly chosen control points with
randomly located features scattered on it, and the intensity values in the two images
of the surface strip. The images are made by taking two slightly different parallel pro-
jections of the feature points, filtering the projections through a Gaussian, and sampling
the filtered projections at equally spaced sample points. The sample values in corre-
sponding patches of the two images are used as the inputs to a module. The boundaries
of two neighbouring patches are shown on the spline.
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pixels. After projecting a dot into an image, it is blurred through a gaus-
sian, and the intensity of the blur is sampled at discrete points corre-
sponding to the pixels. The intensities of several adjacent pixels then
encode the exact location of the dot in the image. If it moves sideways
slightly, the intensities change slightly, so disparities are represented ex-
actly, provided we do not have too many dots right next to each other.

Using one-dimensional strips of stereo images like the ones shown in
Figure 1.5, we tested out the learning procedure and discovered the var-
ious technical tricks that were necessary to get it to work in reasonable
time (Becker and Hinton 1989). Figure 1.6 shows the type of network we
used. Roughly corresponding patches of the two images are used as in-
put to module A, and nearby patches are used as input to module B. The
inputs are not directly connected to the 'outputs' of the two modules,
because we know that hidden units are required to extract higher order
properties like disparity. So each module is given a hidden layer. The
hidden units are of the type most commonly used with back-propaga-
tion. They have a real valued output between zero and one, which is a
logistic function of the total input they receive from the layer below. The
output units, a and b, are linear. The modules start with small random
weights.

A set of 1,000 training stereo-pairs is presented to the two modules,
and they accumulate statistics, such as the mean and variance of a - b
and a + b. The 1,000 training cases are then presented again, and, for
each training case, each module computes the derivative of the mutual
information measure in equation 1 with respect to the activity of the
output unit for that training case. This computation of the derivative is
performed by a separate computer program. We are working on ways
of performing an equivalent computation in a neural net, but for the
research described here, this part is distinctly unneuronlike. Given the

Figure 1.6: Two modules that look at neighbouring image patches and learn to transform
their input vectors into scalar output values that have high mutual information.



14 Connectionism: Theory and Practice

derivative of the mutual information w.r.t the output, it is then trivial
to use the back-propagation algorithm to calculate the derivative of the
mutual information w.r.t. each weight in a module. After accumulating
these weight derivatives for all 1,000 training cases, the weights are up-
dated in the direction that increases the mutual information (see Becker
and Hinton 1989 for details). This whole procedure, involving two
sweeps through all 1,000 training cases, is then repeated with the new
set of weights. Many weight updates are required before the modules
eventually learn to extract disparity.

After learning, we can get some idea of what the outputs of the mod-
ules represent by plotting the activity of an output unit against the
depth of the surface strip that was used to generate the image. Figure
1.7 shows such a plot for a network that was trained on images of flat,
fronto-parallel surfaces. The fact that the plot forms a diagonal band
shows that the output unit represents depth. The procedure also works
when applied to images of curved surfaces, but the representation of
depth that it discovers is noisier. Remember that we did not give it any
knowledge of the third dimension. It discovered depth because depth
is what is coherent across the 2-D image space. Of course, there is a wor-
rying sense in which it has no idea what the outputs of the modules
mean, but that does not worry the network and does not stop it from ex-
tracting depth and making it explicit in the activity level of a single unit.

More Complex Kinds of Coherence

In the previous example, we assumed that the network should try to
discover a property which was approximately equal for nearby patches
of its input. This assumption is good for discovering depth in an ensem-
ble of stereo images of fronto-parallel planes, but it is less good for

Figure 1.7: The activity of the linear output unit of a module (vertical axis) as a function
of the disparity (horizontal axis) for all 1,000 test cases using planar surface strips, (a)
shows the response for a network trained with ten adaptive nonlinear hidden units per
module, and (b) shows the response for a network trained with 100 nonadaptive Gaus-
sian hidden units per module.
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slanted planes or curved surfaces. While it is true that nearby patches
have similar depths even for these more complex surfaces, there are
much stronger regularities. For a slanted plane, the depth at one point
is exactly the average of the depth at two neighbouring points. For
curved surfaces of the kind we used, the depth at a point can be com-
puted almost exactly by linearly combining the depths of two neigh-
bouring points on either side. If all five points are equally spaced on a
straight line, the depth, d-, of the middle point is almost exactly deter-
mined by the following linear equation:

So instead of building on the assumption that we should extract a prop-
erty that has similar values for neighbouring patches, we can build on
the far more general assumption that we should extract, from each
patch of the image, a property that is a linear combination of the prop-
erties extracted from nearby patches. As we shall see, it is not necessary
to assume that the linear function has the particular coefficients shown
in equation 2. The learning procedure can discover the best coefficients
at the same time as it discovers how to extract the property that is lin-
early predictable from the immediate context. There is a loose analogy
here with a very successful methodology in physics: Try to find proper-
ties of the world (such as current and voltage or length and force) that
are related together by linear equations.

Figure 1.8 shows the type of architecture that we used. The network
does not know what it is meant to be extracting. Its aim in life is to

Figure 1.8: A network in which the goal of the learning is to maximize the information be-
tween the output of a local module and the contextually predicted output that is com-
puted by using a linear function of the outputs of nearby modules. This network is used
for curved surface interpolation.
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extract something locally from each patch that agrees with some kind of
average of the things that it is extracting from nearby patches. In trying
to maximize the mutual information between the locally extracted
property value and the contextually predicted value, the network com-
putes how the mutual information would change if it changed the lo-
cally extracted value. Then it uses back-propagation to train up the
weights that are doing the local extraction. It also computes the deriva-
tive of the mutual information w.r.t. the contextually predicted value.
By back-propagating this derivative through the weighted connections
coming from nearby patches, it can learn the weights that should be
used in the linear prediction as well as the weights used for extracting
property values in nearby modules.

More details of the actual learning are given in Becker and Hinton
(1989). Several technical tricks were used to speed up the learning. After
learning, the network can extract depth from curved surfaces, and it has
also learned how to interpolate these surfaces. The actual coefficients it
learned for the linear interpolating function were -0.04,0.64,0.65, -0.04.
These differ slightly from the optimal coefficients shown in equation 2,
but they actually work better, because the locally extracted depth esti-
mates are noisy. With noisy depth estimates it is better to use smaller co-
efficients in the interpolating function, because the squares of the
coefficients amplify the variance of the noise in the depth estimates. So
the network learned an even better interpolating function than we had
intended.

Discovering the Single Viewpoint Constraint

We have used random-dot stereo-pairs to illustrate the power of a learn-
ing algorithm that uses an assumption of spatial coherence. To dispel
the idea that the algorithm only works for finding depth in stereo-pairs,
we briefly describe a completely different example, in which the same
basic learning procedure discovers a very significant underlying regu-
larity in images of a rigid object.

Consider an ensemble of images of the same two-dimensional shape,
but at different positions, orientations, and scales. To make life easy for
ourselves, let us constrain the images so that one end of the object al-
ways falls in one half of the image and the other end in the other half,
as shown in Figure 1.9. Now, what kind of mutual information exists
between the two halves of the image? Since all the images are of the
same object, there is no point in identifying the object from one half of
the image and predicting that the other half contains another part of the
same object. We already know this, so it conveys no information. All of
the mutual information lies in the fact that the position, size, and
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Figure 1.9: A module with two halves that try to agree on their predictions. The input
to each half is 100 intensity values (indicated by the areas of the black circles). Each half
has 200 gaussian radial basis hidden units (constrained to be the same for the two
halves) connected to four linear output units via connections with modifiable weights.

orientation of one end of the object completely determine the position,
size, and orientation of the other end. If you look at one half of the im-
age you can predict the size, position, and orientation of the whole ob-
ject. If you look at the other half you can predict the same four
parameters. So these four parameters are invariant across space. They
can be extracted locally from each half of the image, and the parameters
extracted from adjacent patches will then agree perfectly.

Figure 1.9 shows a network, designed by Rich Zemel, that learns to
extract these four parameters. The intensities in each half of the image
are converted into the activity levels of 17200 'radial basis functions.'
These radial basis functions (Moody and Darken 1989) are non-adap-
tive and are introduced to allow the network to extract properties that
are nonlinear functions of the raw images. The only parts of the net-
work that learn are the weights connecting the radial basis functions to
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the four linear output units of each module. These weights are modified
to maximize the mutual information between the four output units of
one module and the four output units of the other. Since the output of
each module is a vector of four activities instead of a single scalar, we
need to optimize a slightly more complex information measure than the
one given in equation 1.

where Cov means covariance matrix, Det means determinant, and a and
b are vectors.

The network learns to extract four parameters that agree very signif-
icantly between the two modules. We hoped that these four parameters
would be a simple linear transformation of the x-position, y-position,
horizontal-extent, and vertical-extent of the object. Unfortunately, they
are not (Zemel and Hinton 1990) - they are a nonlinear encoding of
these four parameters.

One good thing about this kind of network is that, after learning, it is
very good at recognizing the object. If we show it an image of the object
it was trained on, the outputs of the two modules will agree fairly pre-
cisely. If, however, we deform the object, or we use an image of some
other object, the outputs of the two modules will not agree, so the net-
work can use this lack of agreement as evidence that its object is not
present. This may seem like a curious way to recognize objects, but, in
practice, the very best systems for recognizing three-dimensional ob-
jects from single grey-level images work on exactly this principle (Lowe
1985).

Conclusion

We have seen how the assumption of spatial coherence can be used to
discover important underlying properties in two very different ensem-
bles of images. Several different kinds of 'innate' knowledge were built
into these networks:

(1) Innate knowledge about two-dimensional spatial proximity is
built into the architecture of the network.

(2) The number and width of the hidden layers within each module
encodes assumptions about the complexity of the process that
extracts underlying parameters from an image patch.

(3) The way in which the outputs of modules interact encodes as-
sumptions about whether the underlying parameters are invari-
ant across space or just linearly predictable across space.
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(4) The number of outputs of each module (and the form of the in-
formation measure being optimized) encode information about
how many parameters should be extracted from each patch.

Nevertheless, the basic principle is the same in both the tasks described
and can be applied to a very wide range of other tasks. By using other
forms of coherence, particularly coherence across time, it should be pos-
sible to discover a great many of the underlying causes of the sensory
input with no explicit instruction.

Of course this kind of learning procedure would not work if we lived
in a pathological world in which underlying causes did not leave coher-
ent footprints in the sensory data. Cryptographers spend their time try-
ing to design schemes for encrypting underlying structure in such a
pathological way. Fortunately, although nature may play dice, it is not
a cryptographer. In the natural world the sensory data is not produced
by an adversary - it is produced by physics. So although, in the worst
case, a relatively simple technique would not stand a chance of work-
ing, in reality it can do a very good job of discovering the underlying
causal structure.
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COMMENT
Modularity, Unsupervised Learning,

and Supervised Learning
Michael I. Jordan and Robert A. Jacobs

Hinton and Becker present a novel unsupervised learning algorithm for
connectionist networks. The algorithm is one of the most interesting yet
proposed in the literature on unsupervised learning. It has a number of
features that distinguish it from classical algorithms in the unsuper-
vised learning framework; most noteworthy among these are the inter-
action between two or more network modules and the use of the
mutual information between module outputs as the criterion to drive
the adaptive process. These aspects of the proposal have implications
for a number of general issues in the study of learning systems - in par-
ticular, the relationship between modularity and learning, the role of
competition and co-operation in learning, and the relationship between
unsupervised learning and supervised learning. In this chapter, we dis-
cuss certain of these implications in the light of other recent work on
connectionist learning. We also provide some critical commentary on
technical aspects of the IMAX learning scheme.

Unsupervised Learning and Supervised Learning

We begin with a discussion of the distinction between unsupervised
learning and supervised learning. First and foremost, we would like to
temper the critique of supervised learning offered by Hinton and Beck-
er. In particular, we do not subscribe to the view that supervised learn-
ing is 'not very plausible as a model of human learning because it
requires a teacher.' To the contrary, we believe that much of human
learning, human skill learning in particular, is supervised learning. To
be sure, our conception of supervised learning goes beyond the classical
paradigm in which a 'teacher' provides explicit targets for the output
units of a network - we agree with Hinton and Becker that such a
paradigm is limited as a model of human learning. Human learning,
however, can often be characterized as a process of error correction in
which an internal hypothesis or control strategy is formulated and
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tested, errors are made, and the errors are used to improve the hypoth-
esis. The notion of an error implies the notion of a goal, thus adaptive
processes that are driven by errors have more of the character of super-
vised learning than unsupervised learning. The problem for the classi-
cal supervised learning paradigm is not that errors or goals are
unavailable, but that they are not always provided in a format that is
easily deciphered by the learner.

To develop this argument in more detail, consider the following ex-
ample (cf. Jordan and Rumelhart 1990). When learning to throw a ball
at a target the human learner does not typically have access to a 'teach-
er'; that is, there is no external agency to provide explicit instruction re-
garding the arm motions that are needed to propel the ball towards the
target. As Jordan and Rumelhart point out, however, the ball-throwing
task has the ingredients of a supervised learning task: There is a desired
outcome, which is the image of the ball striking the target; there is an
actual outcome, which is the image of the ball missing the target; and
there is an error between the desired outcome and the actual outcome.
Moreover, the directionality of the visual error vector clearly plays a
role in the process by which humans correct the motor program that un-
derlies throwing behaviour. Tosses too far to the left lead to an attempt
to throw more to the right. The problem for classical supervised learn-
ing algorithms is that the errors that are needed to correct the arm mo-
tion are not provided explicitly in the visual data.

How can the ball-throwing task be treated within the supervised
learning framework? Jordan and Rumelhart propose that the super-
vised learning paradigm must be modified to include a modelling
phase that precedes the traditional error-correcting phase. During the
modelling phase the learner gathers data that allow errors to be trans-
formed appropriately. In particular, the learner acquires an internal
model of the relationship between actions (e.g., the motion of the arm)
and sensory outcomes (e.g., the trajectories of the ball). The acquisition
of an internal model (a 'forward model' in Jordan and Rumelhart's ter-
minology) makes it possible to relate errors between desired outcomes
and actual outcomes to errors in the variables that the learner controls
directly. In particular, the learner utilizes the forward model to compute
estimates of the sensitivities of changes in ball trajectories with respect
to changes in arm motion. These sensitivities are used in the error-cor-
recting phase to convert errors in ball trajectories into errors in arm mo-
tion. The latter can then be used directly in changing the motor
program. This two-phase approach is general enough to handle a
variety of problems that arise in human skill learning 0ordan 1990;
Jordan and Rumelhart 1990).
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To summarize, the classical notion of 'learning with a teacher' can be
misleading as a model of human learning if taken too literally. It is in-
deed unreasonable to assume that an external teacher provides an ex-
plicit target vector to the mental agent responsible for learning a
particular task. This does not imply, however, that the supervised learn-
ing paradigm should be abandoned. Rather, learning systems must in-
clude mechanisms to induce desired outputs from information that is
implicit in the training data. The two-phase approach of Jordan and
Rumelhart is an example of such a mechanism in which errors in the
outputs of a network are induced by making use of an internal model
of an external transformation. We suspect that additional techniques
such as this will be developed and that a more realistic conception of su-
pervised learning will involve a variety of mechanisms to handle situa-
tions in which desired outputs are well-defined but not provided
explicitly to the learner.

Similarly, it can be argued that unsupervised learning techniques that
rely 'only on the input' are of limited utility and that realistic unsuper-
vised learning algorithms must incorporate devices that compare the
outputs of different subsystems. Indeed, the proposal by Hinton and
Becker can be seen as an example of such an approach. Their algorithm
can be thought of as a form of unsupervised learning that has elements
of the comparative process normally associated with supervised learn-
ing. To see this, consider that the mutual information between random
variables A and B can be written as:

where H(A) is the entropy of A, H(B) is the entropy of B, and H(A,B) is
the joint entropy of A and B. In the Gaussian case this equation leads di-
rectly to Equation 1 in Hinton and Becker. Mutual information can also
be written in an asymmetric form:

or alternatively:

I(A,B) = H(B)-H(B\A) (3)

where H(A) is the entropy of A and H(A B) is the conditional entropy
of A given B (similarly for H(B) and H(B A)). From the point of view of
A, the term - H(A I B) is a sensible supervised cost function in which B
is viewed as indirectly providing a target value for A. Indeed, closely re-
lated information-theoretic cost functions have been proposed in the
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context of supervised learning (Hinton 1989). Similarly, A can be
viewed as indirectly providing a target value for B (cf. Equation 3). This
perspective simply restates Hinton and Becker's desiderata that mod-
ules A and B should have 'consistent' outputs. The particular target val-
ue that is chosen for each module is determined by the additional
requirement that H(A) and H(B) - the entropies of the respective distri-
butions - be maximized. Requiring that the output of a module have
maximum entropy given its input is a technique utilized in the classical
unsupervised learning framework (Linsker 1988). Thus the IMAX
learning algorithm has aspects of both traditional supervised learning
and traditional unsupervised learning. The algorithm is clearly closer in
spirit to the latter; however, we would be reluctant to classify IMAX as
an algorithm that depends 'only on the input.' Rather, by using one
view of an object to provide information about another view of an ob-
ject, the algorithm takes a step towards the middle ground of algo-
rithms that induce desired outputs from information that is implicit in
the training data.

Finally, we would like to suggest that the theoretical assumptions un-
derlying supervised learning and unsupervised learning are not as dif-
ferent as Hinton and Becker would have us believe. The distinction
between supervised learning and unsupervised learning that underlies
their discussion is a traditional distinction that has its origins in the lit-
erature on pattern recognition (Duda and Hart 1973). In this literature,
each input vector is assumed to belong to one of a discrete set of cate-
gories. The problem is to process the data in the training set for the pur-
poses of predicting the categories of novel inputs. If the correct
categories of the vectors in the training set are known, the learning al-
gorithm is said to be supervised, otherwise the learning algorithm is
said to be unsupervised. In the classical literature, most unsupervised
learning algorithms are essentially algorithms for performing on-line
clustering of data. They are based on the assumption that clusters are
likely to correspond to categories - an instance of the general epistemo-
logical assumption that 'nature is not a cryptographer.' This important
assumption, which has extensive empirical support even if its philo-
sophical status is not entirely clear (Wigner 1960), provides justification
for the study of unsupervised learning algorithms. The need for such
assumptions, however, is not restricted to the unsupervised learning
paradigm - assumptions that nature is 'simple' are also necessary for
the theory of supervised learning. The major problem in supervised
learning is that of interpolating from the categories of the data in the
training set to the categories of novel inputs. Such interpolation can
only be based on assumptions about the simplicity of the natural pro-
cess that generates the data.
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Modularity

An interesting aspect of the learning algorithm proposed by Hinton and
Becker is its reliance on a multi-network, or modular, architecture. The
architecture is modular in at least two senses of the term: (1) by utilizing
different networks for different input channels, the transduction of the
data is channel-specific, and (2) by utilizing a cost function that de-
pends only on the outputs of the networks involved, the learning pro-
cess is modular with respect to adaptive processes further downstream.
That is, the architecture as a whole can be embedded as an independent
module in a larger architecture without introducing unwanted cou-
plings among modules. In this section we discuss these relationships
between modularity and learning and we contrast Hinton and Becker's
architecture with another recently proposed modular connectionist
architecture.

In situating the problem of modularity and learning in a larger con-
text it is useful to distinguish between two kinds of computational pro-
cesses: convergent processes and divergent processes. Convergent
computation involves taking data in different channels or different for-
mats and integrating them into a common channel or format. An exam-
ple of a convergent computation is the integration of visual data and
somatosensory data that is achieved when an object is simultaneously
manipulated and perceived visually. Convergent computation is useful
whenever a single external event leaves its trace in different channels or
sensory modalities and it is desired to recover a single coherent descrip-
tion of the external event.

Divergent computation involves taking data from a single source and
performing different computations on the data. Divergent computation
is useful whenever the organism has multiple goals and must utilize the
input data differently depending on the goal. For example, the percept
of an arriving baseball yields different motor behaviour depending on
whether the goal is that of catching the ball, hitting the ball, or dodging
the ball. Examples of divergent computation often arise in motor con-
trol and are reflective of an organism's ability to overcome the limita-
tions of simple fixed reflexive behaviour. They also arise in perception
whenever there are specialized processes operating in parallel on a sin-
gle piece of input data.

Convergent computation and divergent computation pose different
kinds of problems for a learning system. To implement a convergent
computation the learner must find a common format that is appropriate
for two or more input channels and must discover how to map input
data into the common format. To implement a divergent computation
the learner must discover how to allocate different subsets of the
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training data to different modules and how to train each module sepa-
rately. Different kinds of computational principles are needed for learn-
ing systems to realize these two types of computation.

The architecture proposed by Hinton and Becker is a particularly
clear example of convergent computation. The modules in their archi-
tecture receive input from a set of non-overlapping sensory channels.
For example, in the stereo vision problem, the channels correspond to
different retinal patches (although there is nothing in the algorithm that
restricts the input to a single sensory modality). The goal of the learning
procedure is to yield modules that transform the data into a common
output format. The algorithm is particularly interesting as a proposal
for organizing convergent computation, because it does not require the
output format to be known a priori.

Systems that implement convergent computation are useful for find-
ing features that are invariant across the input channels. This is exem-
plified by Hinton and Becker's stereo vision simulation, in which the
feature of disparity is invariant across different retinal patches. In the
simulation, the modules share not only a common output format, but
they also share a common input format and, therefore, ideally perform
the same transformation of the input data. The mature system is com-
posed of a set of modules that are essentially copies of each other, trans-
lated with respect to retinal position. Such replication of effort is the
limiting case of convergent computation.

It is also possible to conceive of learning algorithms for modular net-
works in which the emphasis is on divergent computation. Jacobs, Jor-
dan, Nowlan, and Hinton (1991) describe a supervised learning
algorithm for multi-network architectures in which the modules learn
to compute different functions of a single input vector. The assumptions
on which the architecture is based are different from Hinton and Beck-
er's proposal, reflecting the differing nature of divergent and conver-
gent computation. Rather than assuming that the data are generated by
a single underlying event, it is assumed that the environment can be
modelled as a collection of idiosyncratic 'processes,' where a process is
characterized by a particular probabilistic rule that maps input vectors
to output vectors. The training data are assumed to be generated in the
following way. On any given trial it is assumed that (1) an input vector
is selected according to a prior probability distribution, and (2) a partic-
ular process is chosen according to a probability distribution that de-
pends on the input vector. The selected process generates an output
vector and the resulting input-output pair is treated as a basic datum for
a supervised learning trial. Particular processes have higher probabili-
ties of generating particular input-output pairs in different regions of
the input space, thus the learner that wishes to produce the most
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probable output corresponding to a given input must attempt to (1) par-
tition the input space appropriately and (2) estimate the mapping cor-
responding to the most probable process within each partition. Jacobs
et al. describe a multi-network architecture that attempts to find parti-
tions in the input space by utilizing a form of maximum a posteriori
(MAP) estimation. The essential feature of the learning algorithm is that
the modules compete between themselves to account for the data. The
competition forces the modules to focus on different subsets of the
training data and thereby learn to compute different functions. Jacobs
et al. (1991) show that their learning algorithm is a maximum likelihood
estimation procedure for modelling the probability distribution gener-
ated by a finite collection of probabilistic processes.

In complex environments it seems likely that the assumptions under-
lying the competitive architecture of Jacobs et al. and the co-operative
architecture of Hinton and Becker are best viewed as complementary.
Given that an 'environment' is an ensemble of data available at a partic-
ular site in the nervous system, it may be that modules at different sites
are under different pressures to compete or co-operate. It is also impor-
tant to emphasize that complex environments have structure at differ-
ent levels of granularity, and that both convergent computation and
divergent computation may be useful in the same data stream. For ex-
ample, within each partition induced by the competitive modular archi-
tecture the computation may be either convergent or divergent. Thus
different kinds of learning algorithms may be embedded within each
other.1 Convergent computation and divergent computation are best
thought of as modular building blocks out of which more complex sys-
tems may be constructed.

Hinton and Becker also discuss a second aspect of modularity that
has implications for the scaling behaviour of learning algorithms. Sys-
tems can be modular with respect to the credit assignment process; that
is, it may be possible to combine modules without introducing unwant-
ed couplings between the learning processes that assign credit within
modules. Hinton and Becker argue that this form of modularity is relat-
ed to the distinction between supervised learning and unsupervised
learning. In particular, they argue that only unsupervised learning algo-
rithms are modular in their credit assignment, and that supervised
learning algorithms scale poorly because they necessarily introduce
couplings between the weights in different modules. Although we
agree that such coupling is an important problem in complex networks,
we are not convinced that problems with coupling between modules
are diagnostic of the unsupervised-supervised distinction. Many cur-
rent supervised learning algorithms, such as backpropagation, suffer
from unwanted couplings because the credit assignment process is a
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linear operator. It may be that there are nonlinear credit assignment
procedures by which the error terms are orthogonalized as they pass
backward in the network. To a limited degree, the competitive algo-
rithm of Jacobs et al. is such a procedure. As the modules in the compet-
itive architecture begin to specialize, the coupling between the modules
decreases.

It also seems unlikely that unsupervised learning algorithms can
avoid couplings in realistic problems. Consider, for example, the stereo
vision problem discussed by Hinton and Becker. One of the reasons for
the success of their simulations is that in random dot stereograms the
only mutual information between the left patch and the right patch of
the image is due to the disparity. In realistic images, however, there are
many additional sources of mutual information. Suppose, for example,
that a low pass filter is applied to the image. Most of the mutual infor-
mation now inheres in the low pass characteristic of the filter rather
than in the disparity. Thus the IMAX algorithm has to do considerable
work to extract the relatively uninteresting sources of coherence in the
image before it can find the interesting sources of coherence. Indeed,
our major technical concern with the IMAX learning procedure is that
it may fare poorly in the multi-dimensional case because of the high de-
gree of nonlinear coupling that is introduced by the determinant oper-
ator. There are other examples of successful one-dimensional
algorithms that fail when the extension to multiple dimensions
involves the determinant (Safonov 1980). This is, of course, an
empirical issue.

Conclusion

The development of a novel learning algorithm often forces a re-evalu-
ation of the distinctions that underlie our understanding of adaptive
systems. We have attempted to initiate such a re-evaluation in the light
of the algorithm proposed by Hinton and Becker and other recent algo-
rithms proposed in the connectionist literature. We have suggested that
the classical distinctions between supervised learning and unsuper-
vised learning are inadequate, and that realistic learning algorithms are
neither entirely supervised nor entirely unsupervised. We have dis-
cussed the problem of modularity and learning and proposed a distinc-
tion between convergent computation and divergent computation.
These two kinds of computation capture different aspects of the notion
of modularity in an adaptive system and require different kinds of com-
putational principles.
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Note

1 This point was also made by Hinton in the discussion at the Vancouver
workshop.
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2
A Deeper Unity:

Some Feyerabendian Themes in
Neurocomputational Form

Paul M. Churchland

Introduction

By the late sixties, every good materialist expected that epistemological
theory would one day make explanatory contact, perhaps even a reduc-
tive contact, with a proper theory of brain function. Not even the most
optimistic of us, however, expected this to happen in less than fifty
years, and most would have guessed a great deal longer. And yet the
time has arrived. Experimental neuroscience has revealed enough of
the brain's microphysical organization, and mathematical analysis and
computer simulation have revealed enough of its functional signifi-
cance, that we can now address epistemological issues directly. Indeed,
we are in a position to reconstruct, in neurocomputational terms, issues
in the philosophy of science specifically. This is my aim in what follows.

A general accounting of the significance of neural network theory for
the philosophy of science has been published elsewhere (Churchland
1989a, 1989b). My aim here is to focus more particularly on five theses
central to the philosophy of Paul Feyerabend. Those five theses are
as follows:

(1) Perceptual knowledge, without exception, is always an expres-
sion of some speculative framework, some theory: it is never
ideologically neutral (Feyerabend 1958,1962).

(2) The common sense (but still speculative) categorial framework
with which we all understand our mental lives may not express
the true nature of mind nor capture its causally important as-
pects. This common sense framework is in principle displaceable
by a matured materialist framework, even as the vehicle of one's
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spontaneous, first-person psychological judgments (Feyera-
bend 1963a).

(3) Competing theories can be, and occasionally are, incommensura-
ble, in the double sense that a) the terms and doctrines of the one
theory find no adequate translation within the conceptual re-
sources of the other theory, and b) they have no logical connec-
tions to a common observational vocabulary whose accepted
sentences might be used to make a reasoned empirical choice
between them (Feyerabend 1962).

(4) Scientific progress is at least occasionally contingent on the pro-
liferation and exploration of mutually exclusive, large-scale con-
ceptual alternatives to the dominant theory, and such
alternative avenues of exploration are most needed precisely
when the dominant theory has shown itself to be 'empirically
adequate' (Feyerabend 1963b).

(5) The long-term best interests of intellectual progress require that
we proliferate not only theories, but research methodologies as
well (Feyerabend 1970).

In my experience, most philosophers still find these claims to be in-
dividually repugnant and collectively confusing. This is not particular-
ly surprising. Each claim is in conflict with common sense, and with a
respectable epistemological tradition as well. Taken in isolation, and
against that background, each one is bound to seem implausible, even
reckless. But taken together, they form the nucleus of an alternative con-
ception of knowledge, a serious and far-reaching conception with major
virtues of its own. Those virtues have been explored by a number of
writers, most originally and most extensively by Feyerabend himself,
but it is not my purpose here to review the existing arguments in sup-
port of these five themes. My purpose is to outline an entirely new line
of argument - one drawn from computational neuroscience and con-
nectionist AI. Research in these fields has recently made possible a nov-
el conception of such notions as mental representation, knowledge,
learning, conceptual framework, perceptual recognition, and explanatory un-
derstanding. Its portrayal of the kinematics and dynamics of cognitive
activity differs sharply from the common sense conception that under-
lies orthodox approaches to epistemology. The mere existence of such
an alternative conception, one grounded in the brain's microanatomy,
is sufficient to capture one's general interest. But this novel conception
is of especial interest in the present context, because it strongly supports
all five of the Feyerabendian themes listed above. It provides a unitary
explanation of why all five of them are jointly correct.



Figure 2.la

32 Connectionism: Theory and Practice

The claim being made here is fairly strong. Just as Newtonian me-
chanics successfully reduced Keplerian astronomy, so does a connec-
tionist account of cognition reduce a Feyerabendian philosophy of
science. Not everything in Kepler's account survived its Newtonian re-
duction, and not everything in Feyerabend's account survives its neu-
rocomputational reduction. But in both examples the parallel of
principle is sufficiently striking to make the claim of intertheoretic re-
duction and explanatory unification appropriate. And, as with the case
of Kepler and Newton, the cross-theoretic parallels serve to vindicate
the principles reduced - at least in their rough outlines. I begin with a
summary account of the kinematical and dynamical ideas that support
this explanatory reduction.

Neural Nets: An Elementary Account

A primary feature of neuronal organization is schematically depicted in
the 'neural network' of Figure 2.1a. The circles in the bottom row of the
network represent a population of sensory neurons, such as might be
found in the retina. Each of these units projects a proprietary axonal fi-
bre towards a second population of neuron-like units, such as might be
found in the lateral geniculate nucleus (LGN), a mid-brain structure
that is the immediate target of the optic nerve. Each axon there divides
into a fan of terminal branches so as to make a synaptic connection with
every unit in the second population. Real brains are not quite so exhaus-
tive in their connectivity, but a typical axon can make many thousands
or even hundreds of thousands of connections.
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This arrangement allows any unit at the input layer to have an impact
on the activation levels of all, or a great many, of the units at the second
or 'hidden' layer. An input stimulus such as light produces some acti-
vation level in a given input unit, which then conveys a signal of pro-
portional strength along its axon and out the end branches to the many
synaptic connections onto the hidden units. These connections stimu-
late or inhibit the hidden units, as a function of (a) the strength of the
signal, (b) the size or 'weight' of each synaptic connection, and (c) its po-
larity. A given hidden unit simply sums the effects incident from its
many input synapses. The global effect is that a pattern of activations
across the set of input units produces a distinct pattern of activations
across the set of hidden units. Which pattern gets produced, for a given
input, is strictly determined by the configuration of synaptic weights
meeting the hidden units.

The units in the second layer project in turn to a third population of
units, such as might be found in the visual cortex at the back of the
brain, there to make another set of synaptic connections. (In real brains
this pattern typically branches and is iterated through many layers -
roughly, 5 < n < 50 - before the chain concludes in some population of
motor or other 'output' neurons. Real brains also display recurrent or
'feedback' pathways not shown in Figure 2.1a. But for purposes of illus-
tration, a nonbranching feed-forward network of just three layers will
suffice.) In this upper half of the network also, the global effect is that
an activation pattern across the hidden units produces a distinct activa-
tion pattern across the output units. As before, exactly what pattern- to-
pattern transformation takes place is fixed by the configuration of syn-
aptic weights meeting the output units.

All told, this network is a device for transforming any one of a great
many possible input vectors (i.e., activation patterns) into a uniquely
corresponding output vector. It is a device for computing a specific
function, and exactly which function it computes is fixed by the global
configuration of its synaptic weights.

Now for the payoff. There are various procedures for adjusting the
weights so as to yield a network that computes almost any function -
that is, any general vector- to- vector transformation - that we might de-
sire. In fact, we can even impose on it a function we are unable to specify,
so long as we can supply a modestly large set of examples of the desired
input-output pairs. This process is called 'training up the network.'

In artificial networks, training typically proceeds by entering a sam-
ple input vector at the lowest layer, letting it propagate upwards
through the network, noting the (usually erroneous) vector this produc-
es at the topmost layer, calculating the difference between this actual
output and this desired output, and then feeding the error measure into
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Figure 2.1b

a special rule called the generalized delta rule (Rumelhart et al., 1986a,
1986b). This rule then dictates a small adjustment in the antecedent
configuration of all of the synaptic weights in the network. This partic-
ular learning procedure is the popular 'back-propagation' algorithm.
Repeating this procedure many times, over the many input-output ex-
amples in the training set, forces the network to slide down an error gra-
dient in the abstract space that represents its possible synaptic weights
(Figure 2.1b). The adjustments continue until the network has finally as-
sumed a configuration of weights that does yield the appropriate out-
puts for all of the inputs in the training set.
To illustrate this technique with a real example, suppose we want the

network to discriminate sonar echoes of large metallic objects, such as
explosive mines, from sonar echoes of large submarine rocks. The dis-
crimination of such echoes poses a serious problem, because they are ef-
fectively indistinguishable by the human ear and vary widely in
character even within each class. We begin by recording fifty different
mine echoes and fifty different rock echoes - a fair sample of each. We
then digitize the power profile of each echo with a frequency analyzer
and feed the resulting vector into the bank of input units (Figure 2.2a).
We want the output units to respond with appropriate activation levels
(specifically, {1, 0} for a mine; {0, 1} for a rock) when fed an echo of
either kind.

The network's initial verdicts are confused and meaningless, since its
synaptic weights were set at random values. But under the pressure of
the weight-nudging algorithm, it gradually learns to make the desired
distinction among the initial examples. Its output behaviour progres-
sively approximates the correct output vectors. Most gratifyingly, after
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Figure 2.2b

it has mastered the echoes in the training set, it will generalize: it will
reliably identify mine and rock echoes from outside its training set -
echoes it has never heard before. Mine echoes, it turns out, are indeed
united by some subtle weave of features, to which weave the network
has become tuned during the training process. The same is true for rock
echoes. (See Gorman and Sejnowski 1988.)

Here we have a binary discrimination between a pair of diffuse and
very hard-to-define acoustic properties. Indeed, we never did define them!
It is the network that has generated an appropriate internal character-
ization of each type of sound, fuelled only by examples. If we now ex-
amine the behaviour of the hidden units during discriminatory acts in

Figure 2.2a
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the trained network, we discover that the training process has parti-
tioned the space of possible activation vectors across the hidden units
(Figure 2.2b). (Note that this space is not the space of Figure 2.1b. Figure
2.1b depicts the space of possible synaptic weights. Figure 2.2b depicts
the space of possible activation vectors across the middle layer.) The
training process has generated a similarity gradient that culminates in
two 'hot spots' - two rough regions that represent the range of hidden-
unit vector codings for a prototypical mine and a prototypical rock. The
job of the top half of the network is then just the relatively simple one
of discriminating these two subvolumes of that vector space.

Some salient features of such networks beg emphasis. First, the out-
put verdict for any input is produced very swiftly, for the computation
occurs in parallel. The global computation at each layer of units is dis-
tributed among many simultaneously active processing elements: the
weighted synapses and the summative cell bodies. Hence the expres-
sion, 'parallel distributed processing.' Most strikingly, the speed of pro-
cessing is entirely independent of both the number of units involved
and the complexity of the function executed. Each layer could have ten
units or a hundred million; and its configuration of synaptic weights
could be computing simple sums or second-order differential equa-
tions. It would make no difference. Speed is determined solely by the
number of distinct layers in the network. This makes for very swift pro-
cessing indeed. In a living brain, where a typical information-process-
ing pathway has something between five and fifty layers, and each pass
through that hierarchy takes something between ten and twenty milli-
seconds per layer, we are looking at overall processing times (even for
complex recognitional problems) of between one-twentieth of a second
and one second. As both experiment and common knowledge attest,
this is the right range for living creatures.

Second, such networks are functionally persistent. They degrade
gracefully under the scattered failure of synapses or even entire units.
Since each synapse contributes such a tiny part to any computation, its
demise makes an almost undetectable difference. In living creatures, the
computational activity at any layer is essentially a case of multiplying
an input vector by a very large matrix, where each synaptic weight rep-
resents one coefficient of that matrix (Figure 2.3). Since the matrix is so
large - typically in excess of (10s x 103) elements - it might have hun-
dreds of thousands of positive and negative coefficients revert to zero,
and its transformational character would change only slightly. That loss
represents less than one tenth of one per cent of its functional coeffi-
cients. Additionally, since networks learn, they can compensate for such
minor losses by adjusting the weights of the surviving synapses.
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Figure 2.3

Third, the network will regularly render correct verdicts given only
a degraded version or a smallish part of a familiar input vector. This is
because the degraded or partial vector is relevantly similar to a
prototypical input, and the internal coding strategy generated in the
course of training is exquisitely sensitive to such similarities between
possible inputs.

And exactly which similarities are those? They are whichever simi-
larities meet the joint condition that (a) they unite some significant por-
tion of the examples in the training set, and (b) the network managed to
become tuned to them in the course of training. The point is that there
are often many overlapping dimensions of similarity being individual-
ly monitored by the trained network: individually they may be modest
in their effects, but if several are detected together their impact can be
decisive. Here we may recall Ludwig Wittgenstein's famous descrip-
tion of how humans can learn, by ostension, to detect 'family resem-
blances' that defy easy definition. Artificial neural networks recreate
exactly this phenomenon.

Finally, such networks can learn functions far more complex than the
one illustrated and make discriminations far beyond the binary
example portrayed. In the course of learning to produce correctly pro-
nounced speech (as output) in response to printed English text (as .in-
put), Rosenberg and Sejnowski's NETtalk (1987) partitioned its hidden-
unit vector space into fully seventy-nine subspaces, one for each of the
seventy-nine letter- to- phoneme transformations that characterize the
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phonetic significance of English spelling. Since there are seventy-nine
distinct phonemes in English speech but only twenty-six letters in the
alphabet, each letter clearly admits of several different phonetic
interpretations, the correct one being determined by context. Despite
this ambiguity, the network learned to detect which of several possible
transforms is the appropriate one by being sensitive to the contextual
matter of which other letters flank the target letter inside the word. All
of this is a notoriously irregular matter for English spelling, but, even
so, the network learned a close approximation to the correct function.

As in the mine-rock network, an analysis of the behaviour of the hid-
den units during each of the seventy-nine learned transformations re-
veals an important organization. For each letter-to-phoneme
transformation, of course, the hidden layer displays a unique activation
vector: a total of seventy-nine vectors in all. If one examines the similar-
ity relations between these vectors in the trained network, as judged by
their Euclidean proximity in the abstract activation vector space (see
again Figure 2.2b), one discovers that the learning process has produced
a tree-like hierarchy of types (Figure 2.4). Similar sounds are grouped
together and a global structure has emerged in which the deepest divi-
sion is that between the consonants and the vowels. The network has
spontaneously recovered, from the text on which it was trained, the
phonetic structure of English speech!

Such revealing organization across the hidden-unit vector space is
typical of trained networks in a great many contexts and is a provoca-
tive feature of these machines. They partition that space into useful and
well-organized categories relative to the functional task that they are re-
quired to perform.

Other networks have learned to identify the three-dimensional con-
figuration and orientation of curved surfaces, given only flat grey-scale
pictures of those surfaces as input. That is, they solve a version of the
classic shape-from-shading problem in visual psychology (Lehky and
Sejnowski 1988a, 1988b). Still others learn to divine the grammatical el-
ements of sentences fed as input, or to predict the molecular folding of
proteins given amino acid sequences as input, or to categorize olfactory
stimuli into a hierarchical taxonomy, or to guide a jointed limb to grasp
perceived objects, or to predict payment behaviour from loan-applica-
tion profiles. These networks perform their surprising feats of learned
categorization and perceptual discrimination with only the smallest of
'neuronal' resources - usually much less than 103 units. This is less than
one hundred millionth of the resources available in the human brain.
With such powerful cognitive effects being displayed in such modest
artificial models, it is plausible that they represent a major insight into
the functional significance of our own brain's microstructure.
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Figure 2.4

Let us briefly contrast this approach with the rule governed symbol-
manipulation approach of classical artificial intelligence (AI). Unlike
standard serial-processing programmable computers, neural nets typi-
cally have no representation of any rules, and they do not achieve their
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function-computing abilities by following any rules. They simply 'em-
body' the desired function as opposed to calculating it by recursive ap-
plication of a set of rules listed in an externally imposed program.
Moreover, since neural nets perform massively parallel processing, they
can be many millions or even billions of times faster than serial ma-
chines on a wide range of problems, even though they are constructed
of vastly slower physical components.

A further contrast concerns the manner of information storage. In
neural networks, acquired knowledge is stored in a distributed fashion:
specifically, in the intricate permutational structure of the global config-
uration of synaptic weights, which number at least 1014 in a human
brain. The relevant aspects of that vast store are instantly accessed by
the input vectors themselves, since the weights have been configured
by the learning process precisely so as to produce the appropriate acti-
vation patterns in the layer receiving that input vector. This constitutes
a form of 'content-addressable' memory. Given the very high-dimen-
sional representations employed by neural nets (namely, activation vec-
tors across large cell populations), even smallish nets can be exquisitely
sensitive to subtle and hard-to-express similarities among their percep-
tual inputs, and to the intricate contextual features that they may
contain.

This welcome feature allows a network to activate the appropriate
prototype vector at the hidden layer even when the input vector is only
a partial or degraded version of a typical input. The prototypical 'hot
spots' in the activation space of the trained hidden layer function as 'at-
tractors' into which a wide variety of partial or degraded inputs will
'fall.' This phenomenon allows a well-trained network to recognize in-
stances of its categorial system even in novel or noisy circumstances
and given only partial information. In the language of philosophical
theory, this means that a trained network will regularly make an ampli-
ative 'inference' to the best available 'explanation' of the input phenom-
ena. And it will do so in milliseconds.

Finally, neural nets can learn a desired function and generate a cate-
gorial system adequate to compute it even where its makers and train-
ers are ignorant of both. All it needs is sufficient examples of the
relevant function. These are some of the more striking rewards we gain
from our modest attention to the brain's empirical architecture.

Epistemological Issues in Neurocomputational Guise

Let us now turn away from smallish artificial networks and refocus our
attention on a large-scale biological network: the human brain. The sug-
gestion to be explored below is that cognitive activity in the brain
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follows the same pattern displayed in the artificial networks. Knowl-
edge is stored in the global configuration of the brain's synaptic
weights. Learning consists in the modification of those synaptic
weights according to some adjustment procedure that is somehow sen-
sitive to successful or erroneous performance by the network. Success-
ful configuration of the weights yields a complex and hierarchically
organized set of partitions across the various subpopulations of 'hidden
units' scattered throughout the brain. That is, it yields one of many pos-
sible categorial or conceptual frameworks. Conceptual change consists
in reconfiguring the synaptic weights so as to produce a new set of par-
titions across the relevant population(s) of neurons.

In humans, such categorial frameworks can be of remarkable com-
plexity, since the human brain boasts something like 103 neural subpop-
ulations ('layers of hidden units') at a minimum, each of which has
something like 108 distinct neurons. A coding vector with 108 elements
in it can code the contents of a very large book, so we may expect the
prototypes involved to characterize intricate things such as 'stellar col-
lapse' and 'economic depression,' as well as simple things like 'raven'
and 'black.'

Perceptual recognition consists in the activation of an appropriate
prototype vector across some appropriate population of post-sensory
neurons. The achievement of explanatory understanding consists in ex-
actly the same thing, although here the occasion that activates the vec-
tor need not always be sensory in character. Perceptual recognition is
thus just a special case of explanatory understanding.

The preceding begins to evoke the range of epistemological material
we can reconstruct in neurocomputational terms. (A more detailed and
far reaching account can be found in Churchland 1989b.) We are now
prepared to address the claim that motivated this paper, the claim that
five salient themes of Paul Feyerabend's philosophy of science are a nat-
ural consequence of the neurocomputational perspective.

(1) On the theory ladenness of all perception

The argument here is about as brief and as decisive as it could be. Per-
ception is, of course, more than mere peripheral transduction: it is a cog-
nitive achievement. But on the model of cognition outlined above, no
cognitive activity whatever takes place without the relevant input vec-
tors passing through the complex filter of a large set of synaptic weights
(see again Figure 2.1a). Most importantly, any configuration of synaptic
weights dictates a specific set of partitions on the activation space of the
post-sensory neurons to which they connect. And that set of partitions
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constitutes a specific conceptual framework or theory - one of many
millions of possible alternative frameworks.

Any activation pattern produced across the relevant population of
hidden units is thus a point in an antecedently existing space, a space
with antecedently prepared similarity gradients and antecedently pre-
pared partitions having an antecedently prepared significance for sub-
sequent populations of neurons in the processing hierarchy. That
antecedent framework and the configuration of weights that dictates it
represent whatever 'knowledge' the network has accumulated during
past training. That framework may be well trained and finely tuned, or
it may be uninstructed and inchoate. But whichever it is, no cognitive
activity takes place save as the input vectors pass through that specula-
tive configuration of synaptic connections, that theory. Theory-laden-
ness thus emerges not as an unwelcome and accidental blight on what
would otherwise be a neutral cognitive achievement but, rather, as that
which makes processing activity genuinely cognitive in the first place.

From this perspective it is evident that the process of learning about
the world is not just the process of learning which general beliefs to em-
brace, as guided by our neutral perceptual judgments. It is also a pro-
cess of learning how most usefully and penetratingly to perceive the
world, for there is just as much room for conceptual variation and con-
ceptual exploration at the perceptual level as there is at any other level
of knowledge.

The basic point to emphasize is that, since there are almost endlessly
many different possible observational frameworks (that is, hidden-lay-
er weight configurations), where the choice between them is also an
epistemic decision, there can be no question of grounding all epistemic
decisions in some neutral observation framework. There is no such
framework, and epistemic decisions are not made by reference to its
contents in any case. One can certainly regard the unprocessed activa-
tion vectors at the sensory input layer as theoretically neutral, but those
epithelial activation vectors are not themselves prepositional attitudes,
they are not truth-valuable, and they stand in no logical relations to
anything. Their impact on subsequent activity is causal, not logical. Hu-
man knowledge thus has causal 'foundations/ but it has no epistemic
foundations.

(2) On displacing folk psychology

Given the model of cognition outlined above, any conceptual frame-
work whatever is a speculative attempt to process incoming vectors in
a way that is useful to the network, and it is subject to modification or
replacement as a function of whatever pressures are exerted by the
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network's learning algorithm. The system of partitions that constitutes
one's 'folk' conception of mental reality is no exception. It is a learned
framework whose purpose is to render intelligible both the intro-
spectible reality of one's own case and the continuing behaviour of peo-
ple in general. A suitable regime of training should be able to produce
any one of a large variety of alternative conceptions (indeed, even the
'folk' conception is nonuniform across cultures and across individuals).

The idea of embracing an alternative to folk psychology was never
very compelling so long as we could not even point towards a plausible
alternative conception. But now we can. The neurocomputational
framework of the preceding pages portrays cognitive representations as
high-dimensional activation vectors rather than as sentential or propo-
sitional attitudes. And it portrays cognitive activity as the synapse-driv-
en transformation of vectors into other vectors rather than as the rule-
governed drawing of inferences from one proposition to another. It pre-
sents a fundamentally novel kinematics and dynamics of cognitive ac-
tivity. Although it is not yet sufficiently developed for a general transfer
of allegiance to take place, it does hold promise of being descriptively
and explanatorily superior to current folk psychology, and it already
presents real opportunities for first-person use.

One class of such opportunities concerns the various subjective sen-
sory qualia which have so often been held up as paradigm examples of
what materialism can never hope to explicate. A specific colour quale
emerges as a specific activation vector in a three (or four) dimensional
space whose axes correspond to the three types of retinal cones (and
perhaps also the rods). A taste quale emerges as a four-element activa-
tion vector in a four dimensional space whose axes correspond to the
four types of taste sensors in the mouth. Auditory qualia emerge as
more variable vectors whose elements correspond to the places on the
cochlea whose natural frequency corresponds to one element in the
complex incoming sound. The dimensionality of these qualia is rela-
tively low, and thus their internal structure is potentially learnable and
reportable in detail, just as the structure of musical chords is learnable
and reportable. As in the musical case, there is also an increased insight
into the structure of and the relations within the apprehended domain.
One has therefore mastered more than just an esoteric set of labels: one
has increased one's understanding of the phenomena.

Qualia are peripheral phenomena, to be sure, and complexity goes
up as we ascend the processing hierarchy. It remains to be seen how the
story will go in the case of cognitive processing at the level of systematic
linguistic activity. Perhaps the familiar propositional attitudes will be
smoothly reduced by the computational structures we find there, and
perhaps they will simply be eliminated from our scientific ontology
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because nothing of dynamical importance in the brain answers to them.
But whichever is their fate - reduction by something superior or elimi-
nation by something superior - the categories of folk psychology re-
main displaceable in favour of some more penetrating categorial
framework. The only real question is how large the doctrinal and onto-
logical gap will turn out to be between the triumphant new framework
and its poorly-informed historical predecessor.

(3) On incommensurable alternatives

Consider a typical brain subpopulation of something like 108 neurons.
Its abstract activation space will have 108 dimensions. Clearly a space of
such high dimensionality can support an extraordinarily intricate hier-
archical system of similarity gradients and partitions across that space.
Equally clear is the commensurately great variety of such partitional
configurations possible with such generous resources. Now the de-
mand that all possible conceptual frameworks must be somehow
translatable into our current conceptual framework is just the demand
that each and every one of the billions of possible configurations just al-
luded to must stand in some equivalence relation to our current config-
uration. But there is not a reason in the world to think that there is any
such relation that unites this vast diversity of frameworks: not in their
internal structure, nor in their relations to the external world, nor in the
input-output functions they sustain. On the contrary, they are all in
competition with one another, in the sense that they are mutually in-
compatible configurations of the same activation vector space.

The prospect of widespread incommensurability is unsettling to
many philosophers, because it threatens to make a reasoned empirical
choice between competing theoretical frameworks impossible. The real
threat, however, is not to the possibility of rational empirical choice but
to a deeply-entrenched theory of what rational empirical choice consists
in. That superannuated theory requires a relevantly neutral observation
vocabulary among whose sentences the competing theories at issue
have different logical consequences. So long as one embraces that su-
perannuated theory, one will perceive incommensurability as a threat to
reason and objectivity. But once one puts that theory aside, one can get
down to the serious business of exploring how empirical data really
steer our theoretical commitments.

On the model of cognition here being explored, ongoing learning
consists in the continual readjustment of the value-configuration of
one's myriad synaptic weights. Exactly what factors drive such read-
justments in the human brain is currently the focus of much research,
but the familiar philosopher's stories about sets of sentences being
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accepted or rejected as a function of their logical relations with other
sentences plays no detectable role in that research, and no detectable
role in the brain's activity, either. Instead, synaptic change appears to be
driven by such factors as local increases in presynaptic or postsynaptic
activity (posttetanic potentiation), by temporal correlations or anticor-
relations between the activity reaching a given synapse and the activity
reaching other synaptic connections onto the same postsynaptic neuron
(Hebbean learning), by the mutual accommodation of synaptic values
under specific global constraints (Boltzmann learning), perhaps by the
return distribution of conflict messages (back-propagation), and by oth-
er decidedly preconceptual or subconceptual processes.

None of this precludes the possible relevance of sentential and logi-
cal factors for some cases of learning at some high level of processing,
but it does undermine the parochial view that all or even most of hu-
man learning must be captured in those terms. And it therefore frees us
forever from the short-sighted objection that incommensurable alterna-
tives would make objective learning impossible. Learning then pro-
ceeds, as it usually does, by other than 'classical' means. This is good,
because incommensurable alternatives are both possible and actual.
They are also welcome, since 'commensurability' is just a measure of
the similarity between alternative frameworks, and sometimes what
the epistemic situation requires is a profoundly different perspective on
the world. Which brings us to the next theme.

(4) On proliferating theories

Feyerabend's argument (1963) for the wisdom of proliferating theories
is very striking. He points out that important empirical facts can often
be quite properly dismissed as unrevealing noise or intractable chaos
when they are viewed from within one conceptual framework, while
those 'same' empirical facts appear as tractable, revealing, and as deci-
sively incompatible with the first framework when viewed from within
a second conceptual framework. His illustrative example is the empiri-
cal phenomenon of Brownian motion, which constitutes a perpetual
motion machine of the second kind and is thus incompatible with the
second law of classical thermodynamics. However, its status as such
was not appreciated, and could not be fully appreciated, until the rele-
vant details of Brownian motion were brought into clear focus by the
new and very different kinetic theory of heat. What had been an exceed-
ingly minor and opaque curiosity then emerged as a major and unusu-
ally revealing experimental phenomenon - one that refuted the classical
second law.
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Feyerabend has been criticized for overstating the case here. Lamon
(1977) insists that Brownian motion could have been, and to some
extent actually was, recognized as a problem for classical thermody-
namics in advance of its successful analysis by the kinetic theory. Lam-
on may have a point, but I think his resistance here is a quibble (see also
Couvalis 1988). Whatever minor worries might have been brewing in a
few isolated breasts, the fact remains that the kinetic theory trans-
formed our conception of Brownian motion and made salient certain of
its experimentally accessible features that otherwise might never have
risen to consciousness. It is not true that all empirical facts are equally
accessible, nor that their significance is equally evident independently
of the conceptual framework one brings to the experimental situation.
This is all one needs to justify the proliferation of theories, and the case
of Brownian motion remains a striking example of this important
lesson.

From a neurocomputational perspective, this lesson is doubly clear.
Anyone who has spent idle time watching a Hinton diagram evolve
during the training of a neural network will have noticed that networks
often persist in ignoring or in outright misinterpreting salient data until
they have escaped the early and relatively benighted conceptual config-
uration into which the learning algorithm initially pushed them. They
persist in such behaviour until they have assumed a more penetrating
conceptual configuration — one that responds properly to the ambigu-
ous data. (A Hinton diagram is a raster-like display of all of the synap-
tic-weight values of the network being trained. These displayed values
are updated after each presentation of a training example and conse-
quent modification of the weights. Accordingly, one can watch the
weights evolve under the steady pressure of the training examples.) If
the proper final configuration of weights happens already to be known
from prior training runs, one can even watch the 'progress' of the
weights as they collectively inch towards their optimal configuration.

What is striking is that for some problems (the exclusive OR func-
tion, for example) some specific weights regularly start off by evolving
in exactly the wrong direction - they become more and more strongly
negative, for example, when their proper final value should be strongly
positive. One may find oneself yelling at the screen 'No! This way! Over
this way!', as the early network persists in giving erroneous outputs,
and the wayward weights persist in evolving in the wrong direction.
These frustrations abate only when the other weights in the network
have evolved to a configuration that finally allows the network's learn-
ing algorithm to appreciate the various examples it has been 'mishan-
dling' and to pull the miscreant weights towards more useful values.
The proper appreciation of some of the training data, to summarize the
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point, is sometimes impossible without a move to a different conceptual
configuration.

This example illustrates that the moving point in weight-error space
(see again Figure 2.1b) is often obliged to take a highly circuitous path
in following the local error gradient downwards in hopes of finding a
global error minimum. That path may well go through points that pre-
clude both a decent output from the network and a proper lesson from
the learning algorithm for at least some of the student weights. Only
when the network reaches a subsequent point can these defects be
repaired.

A more dramatic example of this empirical blindness occurs when,
as occasionally happens, the evolving weight-space point gets caught in
a purely 'local minimum,' that is, in a cul-de-sac in weight-error space
in which the network is still producing somewhat erroneous outputs,
but where every relatively small change in the synaptic weights pro-
duces an increase in the error measured at the network's output layer.
For any learning algorithm that moves the weight-space point in small
increments only, the network will be permanently stuck at that point So
far as it is concerned, it has achieved the 'best possible' theory.

In order to escape such an epistemic predicament (and occasional en-
trapments are inevitable), we need a learning algorithm that at least oc-
casionally requires the network to make a relatively large jump: a jump
to a significantly different portion of synaptic weight space, to a signif-
icantly different conceptual configuration. From that new weight-space
point, the network may then evolve quickly towards new achievements
in error reduction.

It is evident that, for some global minima and some starting points,
you can't get there from here, at least not by small increments of instruc-
tion. This is a clear argument for the wisdom of a learning strategy that
at least occasionally exploits multiple starting points, or discontinuous
shifts, in the attempt to find a descending path towards a genuinely glo-
bal error minimum. It may be difficult to achieve such diversity in a sin-
gle individual (but it is certainly not impossible: see Churchland 1989b,
Chapter 11). But it can be achieved with different individuals in the
same scientific community. And of course it is achieved. That is the
point of different 'schools.'

These considerations do not resolve the essentially political conflict
between Feyerabend and Thomas Kuhn concerning how much of our
resources to put into proliferation and how much into pursuing a single
but highly progressive 'paradigm.' But it does mean that a wise re-
search policy must recognize the need for striking, and endlessly re-
striking, a useful balance between these two opposing tensions.
Proliferation is a desideratum that will never go away, because the
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prospect of a false but compelling local error minimum is a threat
that will never go away, and because complacency is endemic to the
human soul.

(5) On proliferating methodologies

The Feyerabend I have in mind here is of course the Feyerabend of
Against Method (1970), in which he recommends an opportunistic anar-
chism, constrained only by the innate organization of the human ner-
vous system, as a more promising policy in guiding our scientific
behaviour than is any of the methodological straitjackets so far articu-
lated by scientists and philosophers of science. In a climate of method-
ological stories benighted by their formulation in logico-linguistic
terms, this is certainly good advice. But it need not always be good ad-
vice: someday, perhaps, our acquired methodological wisdom may
equal or surpass the innate wisdom of a healthy nervous system, be-
cause we have figured out how the nervous system works and can see
how to make it work even better.

This is not a vain hope. Guided by a variety of nonclassical learning
algorithms, artificial neural networks have recently proved capable of
some astonishing feats of knowledge acquisition - feats that represent
a quantum leap over any of the classical logico-linguistic achievements.
A new door has opened in normative epistemology, and it concerns the
comparative virtues and capabilities of alternative learning algorithms-
algorithms aimed not at adjusting sets of propositions so as to meet cer-
tain criteria of consistency or coherence, but at adjusting iterated popu-
lations of synaptic weights so as to approximate certain input-output
functions or certain dynamical behaviors. What is striking, even at this
early stage of exploration, is that the space of possible learning algorithms
is enormous. In the newly developed research program called 'connec-
tionist AI,' almost as much research time is spent on critically exploring
the diverse properties of various existing learning algorithms and on
devising and exploring new ones as is spent on the properties of trained
networks themselves (see Hinton 1989).

This is a healthy situation, and such proliferation should be encour-
aged. There are at least two major reasons for this. The first concerns the
relatively limited aim of trying to understand how the human brain
conducts its epistemic affairs. We need to explore the space of possible
learning algorithms until we discover which specific place in it corre-
sponds to the brain's mode of operation.

The second reason is deeper. Even supposing we succeed in identi-
fying the brain's place in that space, there is no reason to suppose that
our biologically innate learning algorithm is the best possible
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algorithm, or even that there exists a uniquely best learning algorithm.
Perhaps they just get better and better, ad infinitum, which means that
we must explore them indefinitely. Or perhaps they radiate along di-
verse dimensions of distinct virtue, to be explored as our changing
needs dictate. The proliferation of learning algorithms is a virtuous pol-
icy of long-term science for much the same reasons that proliferation is
a virtue in the case of theories. The alternatives are certainly there, and
we will not appreciate their virtues unless we explore them.

This may place unreasonable demands on the human nervous sys-
tem, since presumably it is insufficiently plastic to participate directly
in this exploration. Its learning algorithms may be hopelessly hard-
wired into its structure. Methodological proliferation may therefore
show itself only in artificially constructed brains designed specifically
to do novel kinds of scientific exploration on our behalf. But this chang-
es the philosophical point not at all.

The preceding defence of the proliferation of methodologies does not
justify exactly the position that Feyerabend outlined in Against Method.
He is there reacting to the shortcomings of an old tradition in method-
ological research rather than anticipating the possible virtues of a new
tradition. But that is all right. The bottom line is that proliferating
methodologies is still a very good idea, and for reasons beyond those
urged by Feyerabend.

Conclusion

Philosophers are not always so fortunate as Feyerabend appears to be,
in respect to finding a systematic vindication of their ideas through an
intertheoretic reduction by a later and more penetrating theoretical
framework. One must be intrigued by the convergence of principle
here, and one must be impressed by the insight that motivated Feyera-
bend's original articulation and defence of the five theses listed. It
seems likely that each one of these important theses will live on, and
grow, in a neurocomputational guise.
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COMMENT

Waarheden als Koeien1

Charles Travis

Like Professor Churchland, I think neural network theory (NNT) has
philosophical promise. But perhaps that is not that much like Professor
Churchland. What he thinks, I take it, is that NNT has already deliv-
ered. Specifically, he cites five theses of Paul Feyerabend which he
thinks NNT demonstrates to be correct. This raises two issues. First, are
the theses correct? Second, are they shown to be by NNT? Or, if NNT
provides less than apodictic proof, how, if at all, does it support them?

On one point I disagree with Churchland. He says of the theses that
'most philosophers ... find these claims to be individually repugnant
and collectively confusing,' and that they are 'in conflict with common
sense. 'I find that, with one exception, these theses range from platitu-
dinous to intriguing. I think that, when they are stated carefully, most
philosophers would agree. One of Churchland's biggest contributions
in the present paper is to show us how to make something interesting
and suggestive out of some of the more platitudinous theses. As I feel
some discomfort with the first two theses, it is these I propose to dis-
cuss.

Languages and Theories

Churchland's first thesis is: 'perceptual knowledge, without exception,
is always an expression of some speculative framework, some the
theory. What could this mean? Suppose I say that there is, or that I see,
a dun cow in that field, or that the cow in that field is dun. What I say is
mistaken if there is no cow in that field, or if that is not a cow, or, in the
second case, if that cow is not dun. That is not enough, by normal lights,
for what I said to be an expression of a theory. On the contrary: I may sim-
ply have reported what I saw: a dun cow, or that there was one there.
Or, if I was mistaken, then I misrepresented what I saw, and did so in say-
ing how things looked to me rather than how I concluded that they were.
Similarly, it is not a dun cow in the field if it is a mere mechanical mock
cow. But again, it does not follow that I hold a theory to the effect that
what I saw was not a mock cow, or that I assume this or am inferring it

51
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from anything. Thus far, I see no reason to flout the obvious. Nor, I
think, does Churchland.

Where someone says or thinks, blah, it is natural to call it an expres-
sion of a theory where he holds some theory, or set of beliefs, and takes
what he thus believes as partial reason for saying blah. A colleague says
of a job candidate: 'He will never amount to much,' which may be an ex-
pression of the theory, held by him, that nice guys finish last, or that
crypto-urban-quasi-sophisticate realism has seen its day; but which is
not inevitably an expression of any theory at all. Perhaps Churchland
sees reason to obliterate the distinction marked here. Perhaps he thinks
that, in this sense, we inevitably express theories whenever we talk. If
so, he has produced no reason for thinking so and is, I think, wrong. But
I do not think that this is what Churchland has in mind.

There is another sense in which what we say might be thought to ex-
press a theory - one highly relevant to Feyerabend's thought. One
might think: the terms in which we express what we say would have no
coherent application - would mark no distinction between two types of
situations the world actually presents us with (situation in which one of
those terms are true), if not for given facts as to the sorts of properties
situations might (coherently) have. Making sense in speaking as we do
would thus presuppose those facts. Our so speaking/thinking might
then be said to express a theory incorporating them.

I will show why this is untrue. True, any particular way of separating
one sort of case from others presupposes certain principles, in the sense
that it would not identify cases as of one sort or another unless those
principles held. Any procedure for classifying would, if certain things
were true, come up empty handed. What is supposed to identify a case
as of a given sort may always turn out to be something that could not
be a feature of any actual case. The mistake is to think that given words
are wedded to some particular way of drawing a distinction - of identi-
fying cases where they apply and cases where they do not - or that they
are wedded by what they mean to some particular view of how that dis-
tinction is to be drawn. In fact, words are more resilient - more poly-
morphous than that. As a rule, they, and their correct applications, will
mesh with whatever reasonably drawn distinctions turn out to be in the
general area they are reasonably taken to have aimed at. So merely sup-
posing that there is some sort of thing or situation that words would
correctly describe does not (as Churchland and Feyerabend seem to
think) commit us to any further views on what in fact distinguishes
some ways for the world to be from others.

Some history will help. In the wake of the problems that beset some
analytic/synthetic distinctions, it is not surprising that, between the
mid-fifties and the early sixties cogent attacks were mounted on a range
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of related supposed distinctions between, on the one hand, observation,
and, on the other, theory, or inference, or prediction. (Think of Putnam
here, not Quine.) The two most important attacks, to my mind, were
mounted by Putnam2 and Austin.3 On the observation side, the main
point was that one cannot identify some class of predicates or proper-
ties they might express nor, correspondingly, some class of sentences
(each with meaning fully fixed) nor thoughts (things to be said) as ob-
servational as such in any interesting sense. In other words, any sensible
observation/theory distinction cannot be a distinction between one
kind of predicate, or property, or proposition, and another. Rather, ob-
servational status, insofar as this makes sense at all, is very much an oc-
casion-variable affair. What is more, choose an occasion for expressing,
or supporting, a thought, and the role observation counts as having
played on it will be an occasion-variable affair, varying across occasions
for describing what happened on that one particular occasion. This is
partly because what a predicate says of something is an occasion-vari-
able. But even fixing a given contribution for a predicate to make, ob-
servation plays various roles on various occasions in establishing
whether what the predicate thus says of something is so.

Choose a candidate observational property- being dun, or a cow, say.
Then sometimes one may just see that something is a dun cow. What one
sees settles the matter, with no residual issue left open. Sometimes,
though, one must deduce that something is a dun cow from other facts
and/or by appeal to some theory. One must, for example, collect evi-
dence for its being dun, or a cow. So that something is a dun cow is
sometimes something one just observes, and sometimes it is something
that observation alone cannot settle. Even whether on some given occa-
sion it was just observable that there was a dun cow in the field may be
an occasion-variable matter - epistemic positions are not in general en-
joyed tout court. All of the above could be said of virtually any putative
theoretical predicate or property. So much the worse for the idea of a dis-
tinction on these lines.

As Putnam emphasizes, both observational and theoretical consider-
ations will play a role, in general, in determining how given situations
classify with respect to being thus and so.4 So, in this sense, consider-
ations of both kinds enter into the conditions for the truth of an asser-
tion that this is dun or a dun cow. To say all this is not to deny the
importance or coherence of the notion of observation. As Austin ar-
gued, that notion, with its occasion-sensitivities properly understood, is
crucial to the description of epistemic positions we must recognize our-
selves as capable of being in.

Paul Feyerabend stood at the centre of this critique of observation/
theory contrasts from an early date. His contribution, like Putnam's,
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was to show how the correct specification of what is said to be so in giv-
en words - whether supposedly 'observational' or 'theoretical' - and of
the conditions for that's being so may be conditioned by both observa-
tional and theoretical factors. Feyerabend's concern, that is, was with
the conditions under which things said, whether in 'ordinary' or 'tech-
nical' language, would be true.

Feyerabend did not put things quite this way. His exposition is
marred by one crucial error. That error is the idea that a language has
something which he calls an 'interpretation/Although he does not ex-
plain what an interpretation is, it is clear that he sees a tight connection
between what words mean and the conditions for them to apply truly -
much tighter than is in fact the case. With respect to his idea of an inter-
pretation, what a predicate means must determine, once and for all,
precisely how states of affairs would sort out into ones in which it was
true of an item, and ones in which it was not. But, as Feyerabend notes,
anything which determined that much would presuppose (at least) the
coherence, or applicability to the world, of a certain method for classi-
fying that with which the world in fact confronts us. Any such method
would provide no coherent principles of classification for some things
with which the world conceivably could have confronted us. As Feyer-
abend might put it, any such way of classifying would be incoherent if
some possible theories were true; some intuitively plausible methods
are incoherent given the actual world. So, given what words do mean,
they apply to phenomena (either truly or falsely) only if certain ways of
classifying what the world presents us with are coherent - on Feyera-
bend's view, only if some specific set of principles is true. Those princi-
ples, entailed by the assumption that a given vocabulary is thus
applicable, Feyerabend calls the 'ontological consequences'of that vo-
cabulary. On this view, it is not stretching a point to think of the seman-
tics of a language - the properties conferred on it by its expressions
meaning what they do - as entailing some sketchy theory of the world.

The above endorses an all too common conflation of languages with
theories. As I have argued elsewhere, there is a radical and deep gulf be-
tween meaning and truth conditions. The above position underlines
part of the point of that gulf: it allows words, while their meaning is
fixed, to vary what they require for correct application and thus to ex-
hibit much more resilience in the face of what the world presents than
Feyerabend's position allows. The compatibility of fixed meaning with
various ways of determining in which situations a word was applied
truly permits scientific discoveries to be incorporated into what then
counts as the right way of determining the presence or absence of that
of which words were always speaking. Just this gulf between meaning
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and what decides applications was always at the heart of Putnam's way
with the analytic/synthetic.

Take one of Feyerabend's examples. We first think that whether or
not a cow is dun is an issue to be settled simply by looking, with a certain
insouciance about how the looking is done. We then see the light: there
is a Doppler effect. If the cow is moving (rapidly) relative to the observ-
er, there is more than one way to speak of its colour. For some purposes
the colour of the cow is what it would be with the Doppler effect reck-
oned in. That then turns out to be the right way of settling the colour of
the cow - whether it is what 'is dun' says it to be (and always did). We
may have supposed initially that the colour of a cow is something you
can just see. We now see that, for some purposes, the way it looks is a
matter of its colour and its motion. Nothing about the meanings of co-
lour words ruled on that point in advance of what the optical facts
turned out to be. What those words' meaning did do in advance is to
leave room for discoveries about optics, as they are made, to matter.

It is on just this point that Austin and Putnam differ from Feyerabend.
The data are: whales are not really fish, gold need not be yellow, and so
on. What they show is that, for different theories that might prevail, dif-
ferent semantics would count as that which our terms and concepts
have and had. So, in advance of the facts as to which theory is right, our
concepts are committed to none of them.

Now for Churchland's demonstration. It is suspicious that he does
not cite any particular result of NNT. Rather, he appeals only to the gen-
eral fact that visual stimulus processing can be described in NNT terms.
Actually, he does not even appeal to that fact. His argument proceeds
from the mere fact that processing of visual stimuli occurs. It would
proceed as well on any other model - a computational one, say. This is
a sure sign that what we are going to get is not a scientific demonstra-
tion but a philosophical argument. (Not that there is any harm in that.)

The 'demonstration' appeals to NNT for this premise: an NNT visual
processor, like any other, classifies stimuli as belonging to one or anoth-
er of some range of categories; it is in virtue of its so doing that what we
see are, for example, dun cows. (An NNT explanation of the processor
so working would typically appeal to the fact that there are dun cows
'out there' acting on it; a significant part of what distinguishes NNT
from other approaches. An NNT device 'learns' to retrieve (some of)
whatever information is actually present in the stimulus. This under-
mines Churchland's Feyerabendian point as to these categories, or
some conceptual scheme they support, carrying 'ontological commit-
ments' that are in any sense speculative. Insofar as NNT is special, it thus
seems to work against Churchland. Let us, though, bracket that point.)
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Aside from the fact that Churchland appeals to no special property of
NNT, it is a long hard journey from this premise to the conclusion:
'perceptual knowledge ... is always an expression of some speculative
framework'- that is, commitments presupposed by its way of being
put. Churchland attempts to span the gaping expanse here with an ar-
gument that appeals to two principles. The first is that the processor, in
virtue of categorizing as it does, determines a particular set of concepts
by which we see the world: what we see, and may take ourselves to see,
is always something fitting one or more of these concepts. The second
principle is that any set of concepts has 'ontological commitments'(to
use Feyerabend's term): it coherently distinguishes between different
ways there actually are for the world to be given the truth of some (well-
defined?) set of principles, which, to use Churchland's term, it thus
'expresses.'

NNT, of course, lends no support to either of these principles. How
could NNT do that? The second, in fact, merely repeats the contentious
point distinguishing Putnam and Austin from Feyerabend; a point on
which philosophers may differ while recognizing the thorough-going
intermingling of observation and theory. (What are in conflict here are
background philosophies of language.)

Churchland's argument is broken-backed at both steps. His first
claim is false for reasons well stated by Feyerabend, with whom he is at
odds. His second claim agrees with Feyerabend but is mistaken for rea-
sons already indicated. On the first point, Feyerabend says,

It is quite obvious that, however well behaved and useful a physical instru-
ment may be, the fact that in certain situations it consistently reacts in a well
defined way does not allow us to infer (logically!) what those reactions mean.
First, because the existence of a certain observational ability ... is compatible
with the most diverse interpretations of the things observed ... It should then
be equally obvious that, however well behaved and useful a human observer
may be, the fact that in certain situations he (consistently) produces a certain
noise, does not allow us to infer what this noise means.5

The point, crudely put, is that a concept is not identified simply by some
mechanism or procedure for classifying items as falling under it or not,
much less for classifying stimuli as produced by such items or not.
There is, inter alia, the question of when, if ever, the mechanism is to be
seen as having gone wrong, or even to be such as to go wrong system-
atically. (For any such mechanism and any one of our concepts, the an-
swer will not be 'never'; which is related to the reason why language
does not saddle us with commitments in the way both Churchland and
Feyerabend take it to.)
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A simple illustration is furnished by a problem posed by Leibniz (a
problem which exercised Russell). Suppose I have a friend, Jane. I know
who Jane is so, on one criterion, have a concept of her; a concept of her
being such and such a person. I am also equipped with certain devices
for recognizing her when I confront her. These are very reliable. But,
Leibniz demonstrated,6 being Jane cannot be equivalent to being so
classified by any such device. There is more to being Jane than meets the
eye or any other organ; more in what it is to be her than in any set of
cues to which such a device might be sensitive. Conversely, the concept
of being Jane is not exhausted, if even touched on, by a full account of
what any such device is doing. The factors which constitute a state of
affairs of something fitting that concept- what is required for such a fit
- are quite different from any factors that would make a recognition de-
vice yield one or another result. The same gap between recognition and
the actual structure of a concept exists, as Feyerabend recognizes, for
any concept. What makes something look (to be) flurg and what makes
something flurg may be related in any of indefinitely many ways. The
former alone, thus, could not fix the concept of flurg.7

Churchland has, I think, roughly this idea. Suppose Martians are
rather like us, but their visual processors are a bit different: whatever in
us classifies stimuli as to colour, those same stimuli are classified on dif-
ferent principles for Martians. Where we see dun, Martians see (if 'see'
is the mot juste) something else. If Martians have colour concepts at all,
they then have a different range of them than we do. I do not dispute
this. It is no reason to obliterate the distinction between concepts
and particular procedures or devices for classifying things as falling
under them.

Moreover, it is not yet demonstrated that, merely in thus having dif-
ferent concepts, we and Martians disagree on any substantive issue. If I
call a cow dun, and a Martian, lacking that concept, calls it blarth, apply-
ing to it some concept we cannot grasp, why should we not both be
right, our perceptual equipment allowing us to capture different as-
pects of reality? Why should a cow's being dun bar it from fitting the
Martian's concept as well?

Turn, now, to Churchland's final step, on which he and Feyerabend
agree. The mistake here is to miss what I have called language's resil-
ience, which might be pictured like this: we begin with a concept, or
term, flurg, about which, in our state of prelapsarian innocence, we take
certain things to be true - e.g., that, as a rule, you can just see whether
it is flurg; there is no more to it than the way it looks; and, perhaps, if it
looks flurg at all then it looks flurg tout court. We also take the concept
flurg to apply in a variety of cases and so apply it for a variety of pur-
poses. It then emerges that what we thought it was to be flurg, together
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with our practice and the way the world has shown itself to be, forms
an inconsistent triad. We may then ask: given all this, what is it most
reasonable to take the semantics of the concept flurg to be - given what
we thought it was to be flurg, and the troubles those thoughts have de-
livered, what is it really to be flurg? It is a nearly invariable rule, I claim,
that the right answer to the question thus posed will not be one that
makes flurg a useless concept - one with no coherent application to the
actual world. The semantics of a concept - in particular, its require-
ments for correct application - is an occasion-variable affair: a concept
may count as having different semantics on different occasions for con-
sidering that question as well as for different ways the world may have
turned out to be. That being so, there is so far no argument that concepts
'express theories' in the sense of Churchland and Feyerabend. Concepts
adapt themselves to the world much better than that.

Seeing Attitudes

My second cause for concern is Churchland's claim that 'the common
sense (but still speculative) framework with which we all understand
our mental lives may not express the true nature of the mind, nor cap-
ture its causally important aspects. This common sense framework is in
principle displaceable.'My worry is about the idea that, for example, in
reporting what people believe, desire, or expect, we are expressing, per-
haps even deploying, a speculative framework - a theory about how
the mind works.

I hear Jane say, triumphantly, that, even though it would be bizarre to
say that I am now wearing socks, I am, for all that, now wearing socks.
I take it she thinks she has thus refuted my view on Moore's misuse of
'know.' There are, of course, ways I could be wrong about this. Conceiv-
ably, Jane mistook our conversation for one about shoes and socks and
believes she has refuted my view of footwear. Thus far, I stick my neck
out. Though it would be odd so to deploy terminology, one just might
say that I have a theory about Jane - one that would, in conceivable cir-
cumstances, be refuted.

I do not think that this is what Churchland has in mind. His idea is
that talk about beliefs, desires, and the other usual suspects contains
within it a theory, or definite presuppositions, about the etiology of be-
haviour - those mechanisms whose actions have our doings as results.
The very idea that people believe and desire things entails a definite
theory of such etiologies. A particular description of Jane - say, as be-
lieving that she has refuted me - entails, or presupposes, a particular ac-
count of the causal histories of some of her doings or other features - the
gloating look, say.
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If this is what Churchland thinks, then he and I disagree. In my view,
our ordinary talk about beliefs, desires, and so on, expresses and
presupposes no theory whatever as to 'how the mind works.' There is
nothing in our wielding of such concepts (either the way we do it or the
fact that we do) for science to refute, no matter what it discovers about
the mind. We are not in an area where there is a say for science at all. It
may, exceptionally, show that certain cases should be classified differ-
ently than we have done with respect, say, to believing X or wishing for
Y. (Psychoanalysis springs to mind here.) But it will never show either
'at last and for the first time' what it really is to believe something or
that no one really does. From the way 'believe' works, no claims are ex-
tractable as to the way the mind works (or none that mesh with scien-
tific enterprises). I do not think that this disagreement can be resolved
within present confines. I can, though, present a few considerations.

In my comments on the first point above, I noted that concepts are, as
a rule, quite prepared to take the deliveries of science on board, incor-
porating them in the most expeditious way into conditions for their cor-
rect application. Such was the basis of Putnam's critique of the
analytic /synthetic. I now note the obvious point that different concepts
behave differently. In particular, they may be sensitive in quite different
ways and to quite different degrees (including zero) to what science
might show. It all depends on the business they are in.

Contrast the concept of a heart (the organ) (heart0) with that of a heart
(the suit) (hearts). Science might show what it really is for something to
be a hearto. In doing so, it may show that the criteria we always thought
to be what identifies something as a hearto are not what really do so,
and, in fact, even sometimes lead us to misidentify things. Perhaps
some things we always thought were heartos are really kidneys.

We may be confident that similar discoveries are not in the cards
when it comes to heartss. It would be futile, for example, to study the
sort of ink with which they are usually printed. The full story of what
makes something a hearts is no doubt long, not to mention tedious.
(Filling in on a deck with a missing queen of hearts, for example, we
may designate a certain joker to fill that role. It is then, pro tem, at least,
a hearts.) Despite the nuances, we may correctly take ourselves to know
all one could ever reasonably want to know about heartss. Science has
nothing further to tell. It is part of the concept of a hearts that what you
see is, nuances aside, what you get. All this is quite consistent with the
notion of being a hearts playing explanatory, and even causal-explana-
tory, roles. A card's being a hearts may explain why it is likely to be dis-
carded. There being many heartss in a given hand may explain why it
is a winning hand and even why it will win. Such does not bring science
further into the picture.
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I do not think that beliefs (nor desires) are 'just like suits of cards,'
whatever that may mean. Nor do I think them much like organs. In
present respects, I think they are more like cards than like organs. But
that tells us little. What I do think is that it is an open question as to what
sorts of concepts believing and desiring are and just how they are sup-
posed to be taken to function. Surprising as it may seem so late in the
twentieth century, a really thorough investigation of their behaviour is
yet to be undertaken. (As Wittgenstein noted, 'what is in question here
are similarities and differences of concepts, not phenomena.'8) In ad-
vance of that investigation, it is premature, I think, to appeal to science
to try to settle what beliefs are, much less whether there are any.

Belief, desire, and the rest figure in our ordinary explanations of what
people do or are like. Jane is gloating because she thinks she refuted me.
That makes her happy. Sometimes, too, such things merit the title cause:
Jane's loathing for Hugo caused her to take a detour. I suspect it is just
this that misleads Churchland into supposing that 'believe/ 'want/ and
so forth refer to (elements in) causal mechanisms. But again, not all caus-
es are mechanisms, nor do all causal explanations refer to such. The toy
on the carpet caused Bill to sprain his ankle. The obstruction in the road
caused motorists to drive around it. Your having left Sam's present on
the table in the open caused him to see what he was getting before it was
his birthday. Losing the ace caused Pia to lose the hand. Why not also:
Sara's latest paper caused Jane to lower her opinion of her?

There are in the literature models of what is said in ascribing beliefs
and the rest to people on which there is no reference to, or implication
of, specific causal mechanisms. While I do not quite subscribe to these
models, they have not to my knowledge ever been refuted. Nor are they
noticeably inferior to any others in the literature. The model I have in
mind for purposes of illustration is a popular version of Ryle. The
rough idea is this. When I say that Jane believes she has refuted me, I
classify her as belonging to certain ranges of cases by virtue of sufficient
similarity to other members of those ranges. For example, I classify her
with cases of people believing they have refuted someone. To so classify
someone is to identify his life as fitting a certain (roughly delineated)
pattern. (Roughly as one might do in calling someone miserly, irascible,
or a roue.) The pattern, while difficult to characterize in other terms, is
constituted by what a person (whose life fits it) does or would do. It is
observable, not hidden. Not all of the pattern is observable at once, of
course - it is a life that is in question here. But when it is settled what
the observable patterns of doings etc. are, nothing further could be rel-
evant to the question as to whether the pattern was this one or that.

The Rylean model concedes to science a role in showing how correct
ascriptions of belief etc. really go. But it also sets definite limits to what
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that role might be. At no time do we see every bit of that which, in a giv-
en person, instantiates a pattern he fits. What we see of him (typically)
leads us to expect more; thwart enough such expectations and you cut
away the grounds for the belief attributions we make. Science may
show, in particular cases, that we are wrong in expecting thus given so;
so that the instantiation we took to be present really was not. Or it may
give reason for assimilating certain specifics to an instantiation of one
pattern rather than another. (Psychoanalysis again.) Given the patterns
and their instantiations, though, there is nothing further to be shown by
empirical discovery as to which ascriptions fit. We may believe that it
takes mechanisms to fit a person to a pattern. Whether that belief is
right or wrong, our ascriptions speak of no such mechanism nor, hence,
does their correctness depend on which causal processes, in which de-
vices, bring the patterns about.

The model assigns an explanatory and causal role to beliefs. But it
does this without viewing beliefs as any specific 'cog' in some works
whose workings yield behavior. That Jane's is, at the moment, the sort
of life of one who believes she has refuted me explains why she would
do thus and so - gloat, for example. It is the sort of life in which one
would gloat. Further, the model supports causal explanations of a quite
interesting sort. That Jane was in some way10 such as to fit the pattern
of a leather of Hugo caused her to take a detour. Perhaps some particu-
lar mechanism made her that way. The above causal explanation refers
to none and supposes nothing about what, specifically, such might be
like. It does, for all that, explain by specifying a cause.

Being such as to exhibit a pattern in one's life is enough to cause some
things. Although we may believe that one could not be so without a
mechanism churning the pattern out, the above causal story mentions,
and commits itself to, none. On Ryle's model, that is the way beliefs and
so on may cause our doings.

I failed to endorse the above 'Rylean' view, although it shows how
Churchland could be wrong about the theoretical commitments of be-
lief and desire talk. It would thus be nice to give some reasons I believe
in for thinking that I, and not Churchland, am right on that issue. What
I can say here, while immensely less than apodictic, is something.

One consideration is brought out by Moore's paradox. Half the para-
dox is the fact that to say, for example, 'I believe this is the way to the
beach' is, on its most standard use, to say roughly the same as, 'This is
the way to the beach.' The two forms of expression stand on nearly equal
footing in a number of respects. In the first, I may be taken to have told
you something about 'my state of mind'; but not in any way in which I
have not told you the same in the second form. In that respect, the same
conclusions (roughly) may be drawn from either. Further, the same
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facts, in both cases, would show what I said to be mistaken. The natural
refutation in the first case, just as much as in the second, would run
something like, 'No it's not; it's the way to the top of the cliff and not
'No you don't. You believe that lilacs are blue/nothing at all.' This indi-
cates that both forms say at least roughly, and apparently exactly, the
same thing to be so. Both are ways of speaking of the way to the beach
and saying such and such to be that. Both, that is, speak of extradermal
states of affairs. Neither is a description of my state of mind (in any sense
in which the other is not). That both state the same explains why one
cannot consistently assert the one and deny the other.

To be sure, there are some differences in the circumstances in which
each form would supply the mot juste. One (only) of the outstanding
uses for the first form is to lessen one's responsibility for what is assert-
ed by explicitly recognizing, or making clear, that there is some doubt
about it: 'I think this is the way to the beach, but I'm not entirely sure.'
What this, seen together with the above facts, suggests is that 'I believe'
- in the use now being considered - is a sort of illocutionary force oper-
ator: what it changes is not what is said to be so but the way in which it
is said to be so - that is, with some reservation - and hence the terms of
assessment appropriate to that saying of it.

The rough equivalence has both positive and negative implications in
present matters. On the positive side, it suggests a view of what is said
(and done) in saying 'believe'; that is, it suggests in what some correct
applications of such words would consist. What it suggests leaves no
room for future surprises as to whether there are such applications. On
the negative side, it suggests that what such talk is doing could not be
what it would have to be if Churchland's sort of scientific discovery
were really relevant to the question as to whether in speaking of people
as believing this or that we are really speaking of anything at all. Here I
can but scratch the surface of each side.

On the positive side, the equivalence supports the following strong,
though presently rough, intuition. Suppose Pia is in a position to say,
"This is the way to the beach,' so that in doing so she would speak cor-
rectly in every respect; she would be entirely free from criticism for mis-
using words - using them other than as (and for) what they are to be -
in any way whatever. Then she is, ipso facto, in a position to say, with
equal correctness and right, 'I believe that this is the way to the beach.'

To this intuition I append a condensed argument. If the latter is en-
tirely correct, she does believe that that is the way to the beach.11 So if
there are cases of people being in a position for saying anything at all,
which is like Pia's, above, for "This is the way to the beach,' then there
are cases of people having some beliefs. Moreover, there are cases where
it is pertinent to say so, since this may be a way of (at least partially)
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classifying someone as being in such a position. So, in supposing (at
least some) belief talk to be sensible and to fit coherently with some
ways for things to be, we suppose no more than that people may
sometimes use words, or be able to, from the sort of position described
for Pia.

The argument might be bolstered as follows. If we are right in sup-
posing there to be a coherent distinction to be drawn between cases of
using words as they are meant to be (cases they are fit for) and cases of
not so doing, then there are positions such as Pia's; we sometimes, in
fact often, enjoy them. All the more so if drawing such a distinction is
pertinent. But give up this premise, and we thereby give up any reason
we might have had either for talking or for listening - certainly on any
occasion like the present one.

I will briefly indicate a line along which the above thought might be
refined. It is commonly thought that whether words are used (on an oc-
casion) as they are meant to be (or may properly be) depends, in gener-
al, on two factors. First, speaking very roughly, there is what the words
mean or say, and thereby require for correct use. Second, there is the na-
ture of the circumstances to which, on that use, the words would be fit-
ted. Criticism of someone's use of words might be directed at either half
of this distinction: someone may have erred in taking words to mean or
say what fits them to (use in/of) such and such (sort of) circumstances
and so exhibit a deficient perception or appreciation of how those
words are to be used, or what their correct use would be. Or, while free
from error of that sort, someone may mistakenly take given circum-
stances to be of such and such a sort, where that is a sort for which the
words are fit.

If Pia says, 1 believe this is the way to the beach,' she may be subject
to criticism of either of the above sorts if what she actually said is mis-
taken (that is, the way she pointed to is not the way to the beach). Sup-
pose, though, we say, 'Pia believed that was the way to the beach.' Our
remark directs criticism of Pia along certain lines: thus far, the first sort
of criticism is not in order; her mastery of that bit of language is not de-
ficient. Pertinent criticism, if any, is to be directed to her appreciation of
how things stood (relevantly) in the world. This exhibits one point in
seeing people as believers of this or that. We may think Pia's perfor-
mances need mechanisms whose actions cause them. But in assessing
her as above we suppose nothing about that. Nor might the brain's dy-
namics, when revealed, give us cause to cease doing so.

Wittgenstein noted the negative implications of Moore's paradox for
a view like Churchland's: on such a view, the paradox should not arise.
In Wittgenstein's words,
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The difficulty becomes insurmountable if you think the sentence (Satz) 'I be-
lieve ...' states something about the state of my mind. If it were so, then
Moore's paradox would have to be reproducible if, instead of saying some-
thing about the state of one's mind, one were making some statement about
the state of one's own brain. But the point is that no assertion about the state
of my (or anyone's) brain is equivalent to the assertion which I believe - for
example, 'He will come.'12

Suppose for a moment that in saying 'X believes that P,' one is referring
to some specific cog in the etiology of X's doings; one with workings,
with those doings as effects. Then it is mysterious why there should be
a paradox where Moore finds one: I say that this is the way to the beach;
and I also say that the relevant cog is not in the right position. There is
no contradiction in that. There may, as Wittgenstein notes, be the kind
of 'paradox' involved in saying, 'I can't speak a word of English.' But
that is not Moore's paradox.

The above is both unfinished and contentious. It points, though, both
to fruitful questions for understanding belief, talk, etc. and to questions
one must assume settled before saying, with Churchland, that talk of
what people believe and want involves a 'speculative framework.'

A second consideration is a set of reasons for believing in the
nonopacity of belief ascriptions. The general slogan here is: when using
words to say what it is that so and so believes, one is responsible for
those words in very nearly the way one is normally responsible for his
own words. Start with a trivial case. Yesterday, Jane thought, what she
might have put in saying, Today is the day I refuted Travis,' or Today
there is a dun cow in the field. Yesterday it was a pied one. What will
tomorrow bring?' If I now want to say what she then believed, as Frege
noted, I must say something like, 'Jane believed that yesterday was the
day she refuted me.' I cannot use the word 'today'; to do so would be to
refer to the day on which I spoke. Mutatis mutandis for the other case.
Similarly for predicates. For most purposes, though not for all, if I say,
pointing at a cow, 'Jane believes that that cow is dun,' what I thus say is
true only if the way Jane believes the cow to be is what counts from the
perspective of my words as being dun. It is not enough if, on some other
occasion, Jane could have used the word 'dun' correctly in saying how
she took the cow to be.

Names provide a vivid case in point. First, I am normally obliged
only to use names that have been properly introduced to my audience
or with which I may suppose them to be familiar. Suppose I am a secret
admirer of an obscure amateur philosopher from Alice Springs named
Ned. In my circles, Ned is as obscure as another human being could be.
Then in the middle of a debate over whether, say, knowledge might be
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a hybrid concept, it would be bizarre for me to say, with no preparation,
'Ned has said some interesting things about this.' Whatever the source
of this bizarreness, it is fully preserved if I say, 'Jane believes that Ned
has said some interesting things about this' even if Jane knows Ned and
thinks of the matter in just those terms. (I might, of course, say, 'There's
this amateur in Alice Springs, and he has said ...' Mutatis mutandis for
'Jane believes that he has said ...')

Second, if I use a 'name' that names nothing, I have misspoken; dou-
bly so if I know the 'name' to name nothing; trebly so if it is generally
known to name nothing. 'Palmerston,' it emerges, is a myth; pure in-
vention by Saatchi and Saatchi (Victorian virtue). Then if I say, 'Palmer-
ston drank Port,' although purporting to say something about
someone, I unwittingly say nothing about anyone; hence I fail to say
anything to be so. Once the myth is thoroughly exploded, I cannot (in
normal contexts) even purport to say anything to be so in so speaking.
So that if I do so speak, I have simply behaved bizarrely; nothing can be
made of my words - specifically, nothing can be taken to have been said
to be so in them.

The point to note is that all of this remains intact when I speak of what
Jane believes. If I say, 'Jane believes ...,' my filling of that blank purports
to provide something that one might take to be so, that is, believe. To
provide that is to provide what might be so or not. I do this only where
there is something my filling would have said; not where there is noth-
ing it could have. Where my filling is 'Palmerston drank Port,' I have
failed to do it. Where the myth about 'Palmerston' has been thoroughly
exploded, my words, in so speaking, will be no more interpretable and
no less bizarre than they would with the 'Jane believes' left off. I have
failed to indulge in an even putative way of saying what someone be-
lieves, for I have not even putatively produced anything one might be-
lieve. If Jane still believes in Palmerston's existence, and that the man
she thus takes there to have been drank Port, then something like that,
and not the ingenuous 'Jane believes that Palmerston ...,' is the correct
way of putting the point (and the way we normally would put it).

Third, if Hugo is also called Bill, and we all know that, then for most
purposes, either name will do as well for saying what Jane believes if
she believes, say, that Hugo is deceiving Pia. Even if Jane does not know
that Hugo is called Bill, what we cannot say correctly is: 'Jane believes
that Hugo is deceiving Pia, but she does not believe that Bill is.' To say
this is just to contradict ourselves, and, given what everyone here
knows, to make no good sense at all. (There may be a point to be made
in this vicinity; but the right way to make it is by circumlocution.)

The general upshot is this. When we say what Jane believes, using a
simple locution like 'Jane believes that she has refuted me,' we state one
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fact, and exactly one fact, about the way Jane represents the world: she
represents it as being in a state in which she has refuted me. No doubt,
for Jane to do that she must think of me and of her refutation, in partic-
ular ways. She associates me, for example, with a particular face or with
particular occasions on which I aroused such and such passions in her.
But those aspects of the way she represents the world are little or no
part of the state of affairs I said to obtain when I said, 'Jane believes she
has refuted me.' In so speaking, I say nothing to identify the particular
ways in which Jane represents these other matters. The indications are
that I could not do this, so that those factors could not play such a role.
For to make my words responsible to those aspects of Pia's mental life
would be incompatible with my responsibilities to use all of my words
as those particular words are to be used from my own perspective on
the world.

If Jane's believing she has refuted me corresponded to a mechanism or
cog in the etiology of her behaviour, then which mechanism that is
would presumably depend on the whole story of the way she represents
relevant features of the world, such as me and her 'refutation.' But the
belief ascription just made refers to, and presupposes, no such specifics.
It is committed, at most, to there being some such story or other to tell -
so, insofar as we believe that such a story requires some suitable etio-
logical mechanism, to there being some such mechanism or other. One
thing, anyway, that a 'Rylean' account got right: the way in which refer-
ence to beliefs is reference to causes of what we do and to just what sort
of causation is involved.

Again, the full story must be much longer than the above. Inter alia,
it will be noticed that some of what I have just said is contentious. Let
us then contend. But let us also once again note, with Wittgenstein,
that the issue is how certain concepts behave; not of what phenomena
there are.

Churchland's 'demonstration' of his second thesis consists in two re-
marks. The first repeats the 'proof of thesis 1. To see people as having
beliefs, desires, etc., we must posses, and implicate in our so seeing
things, stimulus — or data - processing mechanisms of some sort or an-
other. Or so Churchland supposes. Martians might have different
mechanisms and, thus, process the same stimuli differently. That is,
Martians could be the sorts of organisms that did not see people as be-
lievers and desirers. Churchland concludes from this, illegitimately and
almost certainly erroneously, that we learn to see people as believers
and desirers and might learn to see them otherwise. NNT, of course, en-
tails no such thing. It is compatible with there being limits to learning
as well as with there being ways we are constructed to see the world, and
do not learn to see it. It is, after all, a plan for doing psychology, not a
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dogma about what the result of doing psychology must be. But, so far,
NNT has played no role in the argument. It could hardly have done so;
there has been no argument.

Churchland's second remark appeals to the fact that NNT describes
what mechanisms do in terms of 'high-dimensional activation vectors.'
He concludes that, taking NNT on board, we might describe Jane in
terms of her activation vectors and give some such descriptions in place
of saying she believes she has refuted me. Nothing has been said about
what such descriptions might look like; how the right vectors are to be
specified; or by what properties one is to be distinguished from another.
Nothing has been said about what such descriptions would be identify-
ing. The correct response, then, is: we might, of course, do lots of things.

To which I append a suspicion. If such vector-ascriptions are to do
what belief ascriptions in fact do for us, they must have at least two
properties. First, those things about Jane that tell me that a certain belief
ascription applies (that gloating look, produced as it was in those cir-
cumstances, for example) must similarly tell one equipped with the
right vocabulary that such and such vector-ascriptions apply. Or at least
the way she is when I see her to believe such and such must be equally
informative to a wielder of vector-ascriptions. One must be able to read
her vectors in her face. This means, I think, that suitable vector ascrip-
tions could be no more responsible for the way Jane represents the
world than are belief ascriptions. Second, one must be able to infer
(with right, and the same right) from suitable vector ascriptions what
can be inferred from the belief ascriptions they displace - for example,
that it is now time for me to start pointing out to Jane the holes in her
argument. The suspicion is: vector ascriptions with those properties
would turn out to be no more than arcane and recherche ways of saying
what people believe and want.

Churchland comments, 'perhaps the familiar propositional attitudes
... will simply be eliminated from our scientific ontology because noth-
ing of dynamical importance in the brain answers to them.' I have tried
to show that propositional attitude ascriptions in no way purport to say
anything 'of dynamical importance'about the brain or anything else.
They are in a quite different line of work; the question of their failing in
that way just does not arise. They tell no story about the brain nor any
story about mechanisms by which our doings are produced. If I am right,
then the sort of scientific discovery Churchland awaits is just not in
the cards.
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Notes

1 Literally, truths like cows; used to mean truisms, (Dutch).
2 In 'What Theories Are Not,' in Mathematics Matter and Method, Philosophical

Papers, Vol. I, Cambridge University Press, Cambridge, 1975. (Originally
published in 1962).

3 In Sense and Sensibilia, Oxford University Press, Oxford, 1962, lecture 10.
4 I have developed this thought further in my 'Vagueness, Observation and

Sorites/in Mind, Vol. 93 (May-June) 1985.
5 P.K. Feyerabend, 'An Attempt At A Realistic Interpretation Of Experien-

ce,' Proceedings of the Aristotelian Society, Vol. 59 (1958/9), 150.
6 See Discourse on Metaphysics, section 8.
7 A related point: people may share a concept (know who Jane is, what a cow

is, or etc.) while failing to share recognition abilities or devices.
8 Remarks on the Philosophy of Psychology, Vol. 1, §472.
9 What Ryle himself actually thought is, to my mind, a vexed question.

10 Or the way she was, whatever that may have been.
11 More precisely: for at least some purposes she so counts.
12 Remarks on the Philosophy of Psychology, Vol. 1, §501.
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3
Towards a Microstructural Account

of Human Reasoning

David E. Rumelhart

For the past several years my colleagues and I have been analyzing
what we call parallel distributed processing (PDP) systems and looking
at what we call the microstructure of cognition (cf. McClelland, Rumel-
hart, and the PDP Research Group 1986; Rumelhart, McClelland, and
the PDP Research Group 1986). In this work we developed computa-
tional models of cognitive processes based on principles of 'brain-style'
processing. The major focus of this work has been in perception, mem-
ory retrieval, and learning. The question remains as to how this work
extends to the domains of 'higher mental processes.' We have made one
attempt to show how our PDF models can be used to account for sche-
malike effects (Rumelhart, Smolensky, McClelland, and Hinton 1986).
This chapter is designed to push those ideas further and to sketch an ac-
count of reasoning from a PDP perspective. I will proceed by first de-
scribing the basic theoretical structure of the PDP approach. I will then
give a brief account of the reasoning process and finally show how it
can be seen as resulting from a parallel distributed processing system.

Parallel Distributed Processing

Cognitive psychology/information processing has become the domi-
nant approach to the understanding of higher mental processes over
the past twenty-five years or so. The computer has provided, among
other things, the primary conceptual tools that have allowed cognitive
psychology to succeed. These tools have been powerful and have of-
fered a conceptualization of mind that has proven both more rigorous
and more powerful than any that have preceded it. There have, howev-
er, been some drawbacks. Because we have, by and large, worked with
serial, digital, stored-program, symbol-processing Von Neumann-type
computers, we have (perhaps inadvertently) carried much of the bag-
gage of the Von Neumann computer into the 'computer metaphor' and
thence into our formal theories and into our intuitions. The argument is
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not that we should abandon the computational approach to the study
of cognitive processes. Viewing the human cognitive system as a com-
putational system is surely valuable, but, I believe, we have been draw-
ing our insights from the wrong kind of computer. It is clear that brains
are very different kinds of computers from the Von Neumann systems,
with which we have gained so much experience. The PDP approach
suggests that we should ask the question directly about what kind of
computer the brain might be, experiment with Ibrainlike' computers,
and then draw our inspiration from these computational systems. In
short, we want to replace the computer metaphor with the brain meta-
phor for cognitive systems.

Our work builds on the classical work on neural networks (cf. Gross-
berg 1976), associative memories (cf. Anderson 1977; Kohonen 1977,
1984), and the work on perceptions and other self-organizing machines
from the artificial intelligence literature from the late 1950s and early
1960s (cf. Minsky and Papert 1969; Rosenblatt 1962). We have tried to
take these developments, understand their import for the nature of
mental processing, develop our own variations on these ideas, evaluate
the formal characteristics of such systems, build concrete models of spe-
cific psychological processes, and develop new kinds of networks for
application to the particular problems that have seemed most
important.

PDP models, like brains, consist of very large networks of very sim-
ple processing units, which communicate through the passing of exci-
tatory and inhibitory messages to one another. All units work in parallel
without a specific executive. The results emerge from a relaxationlike
interaction between the relatively homogeneous processing units.
Knowledge resides only in the connections, and all learning involves a
modification of the connections.

Thinking and reasoning

One of the areas that has been least touched by our work on PDP mod-
els is that of reasoning and problem solving. Some believe that the ex-
istence of inferences implies a kind of logical system similar to that
employed in conventional symbol-processing models. I have become
increasingly convinced that much of what we call reasoning can better
be accounted for by processes, such as pattern matching and generali-
zation, which are well carried out by PDP models.

If the human information-processing system carries out its computa-
tions by 'settling' into solutions as the PDP perspective suggests rather
than applying logical, symbolic operations as we might have thought,
why are humans so intelligent? How do we make inferences? How do
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we know how to respond to new situations? How can we do science,
mathematics, logic, and so on? In short, how can we do logic if our basic
operations are not logical at all? We can begin to see an answer to these
questions, I believe, with a careful look at reasoning tasks and the cog-
nitive processes involved in them.

There are, it seems to me, three common processes for reasoning
about novel situations.

(1) Reasoning by similarity, in which a problem is solved by seeing
the current situation as similar to a previous one, to which the
solution is known (generalization and analogical reasoning fall
in this category).

(2) Reasoning by mental simulation, in which a problem is solved by
imagining the consequence of an action and making the knowl-
edge that is implicit in our ability to imagine an event explicit.

(3) Formal reasoning, in which a formal symbolic system, such as
mathematics, is employed in the solution of a problem.

The major point of this chapter will be to make these types of processes
explicit and to show how PDP systems can naturally account for these
three types of behaviour.

The basic idea is that we succeed in thinking and logical problem
solving by making the problems we wish to solve conform to problems
we are good at solving. People seem to have three essential abilities,
which together allow them to come to logical conclusions without being
logical. It is these three abilities that underlie the three reasoning strat-
egies mentioned above. These abilities are:

(1) Pattern matching: We seem to be able to 'settle' quickly on an in-
terpretation of an input pattern. This is an ability that is central
to perceiving, remembering, comprehending, and reasoning by
similarity. Our ability to pattern-match is probably not some-
thing that sets humans apart from other animals but is probably
the essential component to most cognitive behaviour.

(2) We are good at modelling our world. That is, we are good at an-
ticipating the new state of affairs resulting from our actions or
from an event we might observe. This ability to build up expec-
tations by 'internalizing' our experiences is probably crucial to
the survival of all organisms in which learning plays a key role.
This is the fundamental ability that underlies our ability to
imagine and to perform mental simulations.

(3) We are good at manipulating our environment. This is another
version of man-the-tool-user, and I believe that this is perhaps
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the crucial skill that allows us to think logically, do mathematics
and science, and, in general, build a culture. Especially impor-
tant here is our ability to manipulate the environment, so that it
comes to represent something. This is what sets humans and
their intellectual accomplishments apart from other animals.

In the following sections I will outline the PDP mechanisms that allow
for these abilities and show how they may result in the reasoning cate-
gories postulated above.

Reasoning by Similarity

Most everyday reasoning probably does not involve much in the way
of manipulating mental models. It probably involves even less in the
way of formal reasoning. Rather, it probably involves assimilating the
novel situation to other situations that are in some way similar - that is,
reasoning by similarity. Now, it is possible to see a continuum of possi-
ble situations for reasoning by similarity involving, at one pole, what
might be called remembering and, at the other, what might be called an-
alogical reasoning. In between, we have such processes as generalizing, be-
ing reminded, and reasoning by example.

There are, within the framework of PDP models, ideal mechanisms
for accounting for a large portion of these phenomena. To see this, it is
useful to conceptualize a PDP system as a content-addressable memory
system (cf. McClelland and Rumelhart 1985). The simplest way to do
this is to imagine a memory system consisting of a very large number
of processing units. These units are rather densely interconnected, and
for simplicity we imagine that each unit has a potential connection to
each other unit in the memory. Each unit receives input from outside
the memory system (either from the external world or from other mod-
ules in the information-processing system itself). The memory system,
in turn, sends outputs to other modules. The units themselves can be
seen as microfeatures. A particular situation is represented by turning
on those microfeatures that constitute a description of the represented
situation. Certain collections of microfeatures might represent the phys-
ical characteristics of the situation, such as the colour or size of an object
being viewed, whether some particular object is present, and so on.
Other microfeatures represent more abstract relational aspects of a situ-
ation, such as whether or not two objects are the same shape. An expe-
rience is assumed to result in a particular pattern of activation
impinging on the memory units. Retrieval is assumed to occur when
this previously active pattern is reinstated over the set of memory units.
Information is stored in the memory by strengthening the connections
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between those units that co-occur and weakening the connections
between pairs of units in which one is on and the other is off.1 Although
the exact values of the weights connecting any two units in the memory
system will differ, depending on the rule employed for changing the
weights, to a first-order of approximation, the connection strengths will
be a function of the correlation between the two units. If they are posi-
tively correlated, their connection strengths will be positive. If they are
negatively correlated, the connection strengths will be negative. If they
are uncorrelated, the connection strengths will be near zero. Retrieval
involves pattern completion. The memory is given a probe in which the
activation of a subset of the units of the memory systems is set and the
system is allowed to settle into a stable state of activation. Such a mem-
ory system can be shown to have the following characteristics.

(1) When a previously stored (i.e., familiar) pattern enters the mem-
ory system., it is amplified, and the system responds with a
stronger version of the input pattern. This is a kind of recogni-
tion response.

(2) When an unfamiliar pattern enters the memory system, it is
dampened, and the activity of the memory system is shut down.
This is a kind of unfamiliarity response.

(3) When part of a familiar pattern is presented, the system re-
sponds by 'filling in' the missing parts. This is a kind of recall
paradigm in which the part constitutes the retrieval cue and the
filling in is a kind of memory reconstruction process. This is a
content-addressable memory system.

(4) When a pattern similar to a stored pattern is presented, the sys-
tem responds by distorting the input towards the stored pattern.
This is a kind of assimilation response in which similar inputs
are assimilated to similar stored events.

(5) Finally, if a number of similar patterns have been stored, the sys-
tem will respond strongly to the central tendency of the stored
patterns - even though the central tendency itself was never
stored. Thus this sort of memory system automatically responds
to prototypes, even when no prototype has been seen.

McClelland and I have studied this sort of memory system in some de-
tail (McClelland and Rumelhart 1985) and have shown how this model
can be applied to a range of memory phenomena. It should be noted
that this is a substantially different view of memory than that suggested
by the traditional place metaphor for memory. In this model an experi-
ence corresponds to a pattern of activation over the memory units. A
memory trace corresponds to the specific set of weight changes that
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occur in response to a particular experience. A distributed model of this
sort leads naturally to the suggestion that semantic memory may be just
the residue of the superposition of episodic traces. Consider, for exam-
ple, the representation of a pattern encountered in several different con-
texts, and assume for the moment that context and content are
represented by different units. Over repeated experience with the same
pattern in different contexts, the pattern will remain in the interconnec-
tions of the units relevant to the content subpattern, but the particular
associations to particular contexts will wash out. However, material
that is encountered only in one particular context will tend to be some-
what contextually bound. So we may not be able to retrieve what we
learn in one context when we need it in other situations.

The heart of this proposal, which makes it so useful for our present
purposes, is that the memory access is determined by the similarity be-
tween the input patterns and the stored patterns. At the same time that
it is considered a content-addressable store, the memory can be seen as
a device for making generalizations to novel situations. Note that what
is really being stored is the degree to which one microfeature predicts
another. Thus, if there are regularities in the stored patterns, such that
whenever a certain configuration of micro features is present a certain
other set of micro features is present, these regularities are as much
stored as is the particular instance. In this way, the system can respond
correctly in the face of novel situations. Consider, for example, a mem-
ory system in which we store patterns one part of which represents the
pronunciation of the root form of a verb and another part of which rep-
resents the past-tense form of the verb. Since there are regularities be-
tween the present-tense and the past-tense forms of the verb, these
regularities are stored. Subsequently, when a probe is given consisting
of a representation of a completely novel root form of a verb, the system
will construct the correct form of the past tense (cf. Rumelhart, McClel-
land, and the PDP Research Group 1986). This generalization is stored
just as much as the patterns that were actually observed (unless, of
course, the novel verb is irregular - in which case the memory will
'over-regularize').

Similarly, reminding 'falls out' of the structure of this system. If the
current situation is similar to a previously encountered situation, it is
then possible that the previous situation will be evoked in the face of the
current situation. It should be noted that the dimension of similarity on
which the match occurs may be of any sort. It may be primarily on the
basis of object similarity, in which case the situation of which you are re-
minded would bear a good deal of surface similarity to the current sit-
uation, or it could depend primarily on more abstract relational
micro features. In this case, the system could well settle into a state that
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constituted a memory for a situation that was quite different on the sur-
face but that had a similar abstract structure. Generally, of course,
reminding would depend on a mix of relational and more concrete
micro features.

Analogical reasoning is a small step from being reminded of a situa-
tion primarily on the basis of relational micro features. Essentially, I
imagine the following situation. The micro features are ordered some-
how in terms of abstract ness from most concrete to most abstract and
relational. I imagine that upon encountering a novel situation certain
aspects of the situation come to attention and serve as the 'retrieval cue'
for the system. There are now a number of possible situations. It might
happen that we had encountered a very similar situation in the past. In
this case, the system would settle on an 'interpretation' of the present
situation that would amount to remembering a similar situation and
filling in the missing micro features based on this situation. It might also
happen that there is no close match wholly consistent with the input
features. In this case, I imagine that the input 'constraints' would grad-
ually be weakened. Normally, in these systems we 'clamp' the inputs,
requiring that the final state of the system be consistent with the retriev-
al cue. Now consider a case in which the retrieval cue itself is gradually
weakened. Suppose that, first, the most concrete inputs are released.
Progressively more abstract micro features are released until an accept-
able match is reached on the sub space, containing as many as possible
of the more relational features. The system could then generalize based
on this sub space and, in that way, come to conclusions about the present
situation based on another set of stored patterns that have the same ba-
sic relational structure as the current situation. In short, the system
would do analogical reasoning.

Figure 3.1 gives a more concrete illustration of the process. We as-
sume that we have a set of micro features ordered, in some way, accord-
ing to their 'abstract ness.' The most concrete features are indicated on
the left and the most abstract on the right. A reasoning situation begins
with the observation of some set of features. These features are
'clamped.' Some of the clamped features are concrete surface features
and others are more abstract relational aspects of the novel situation.
Once these features are clamped, the system begins the process of filling
in the missing features. The filling in is done in such a way as to maxi-
mize a 'goodness' function (see Rumelhart, Smolensky, McClelland,
and Hinton 1986). The system will always find a maximum of this
goodness-of-fit function (that is, a function that measures the degree to
which the reconstructed information is consistent with the stored infor-
mation). Normally, when retrieval occurs, the overall fit will be good.
The system will be able to find a minimum that corresponds to some
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Figure 3.1: Memory features organized from most concrete to most abstract from left to
right. The inputs may either clamp certain features on or simply provide a constant in-
put to certain of the units.

stored experiences, and the result will be retrieval. Other times, howev-
er, the overall goodness will be not as great but still adequate. This case
may correspond to a case of generalization or, perhaps, the memory of
an unusual situation. Finally, it can sometimes happen that the resulting
goodness measure is very low indeed. This corresponds to a situation
in which the memory contains no close matches to the probe situation.
In this case, we can 'release' the clamp on the leftmost microfeature and
see if a good fit will occur after ignoring this input feature. If not, the
next feature can be released, and so on. This process can continue until
a satisfactory fit is discovered. When such a fit is discovered, it will con-
stitute the discovery of a situation that shares the same abstract struc-
tural features as the current situation - namely, an analogous situation.

Ideally, one would like to find a state that matched as many of the in-
put features as possible, giving greater weight to the relational features
but generally preferring more matches to fewer. Moreover, it would be
nice if we did not need an explicit mechanism for monitoring the level
of the goodness function and deciding that it was time to release a fea-
ture. Fortunately, it is possible to solve both problems simultaneously
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by introducing the idea of a 'soft clamp.' Rather than clamp inputs on,
we can simply have an input line deliver a constant amount of activa-
tion to an input unit. The lower that constant, the more easily the sys-
tem can override the input constraint. The size of the smallest input
determines the goodness threshold before it overrides any of the input
features. This system can find the overall best fit, overriding input fea-
tures only when doing so will lead to a sufficiently good fit to make it
worthwhile to give up the goodness contribution given by conforming
to the input. Under this scheme of soft clamps, we would make the
weight of the concrete features the least and the abstract features the
most, and the system will 'automatically' go from merely retrieving, to
generalizing, to analogizing, as is required by the problem. This will oc-
cur without any specific control process determining which to do when.

Mental Models and Mental Simulation

Reasoning by similarity is the most common method of reaching con-
clusions, but it is not the only one. Much of reasoning seems to involve
imagination. It seems that to some degree we can solve problems by
imagining situations and 'seeing' what would happen. Broadly, I take it
that the term mental model refers to our knowledge of some domain that
allows us to reason about it by stepping through a sequence of opera-
tions and imagining what would happen. Thus, for example, when we
answer the question of how many windows our home has by imagining
ourselves walking through it and counting the windows, I take this to
be the application of a mental model of our home. Similarly, when we
imagine what would happen as a result of some action, say, throwing a
cup of water on a desk or sitting on a salt shaker, we are employing
mental models to reason about the consequences of our actions. How
can we account for such phenomena in the context of PDP models?
When discussing the normal PDP interpretation system above, I sug-
gested that the system simply received a set of inputs and then settled
to a state that amounted to the best account of the input, a standard
'comprehension' assumption. When we reason through the application
of mental models, however, we carry out a sequence of mental activities
- not a single settling. How can that sequence be represented and con-
trolled in a PDP model?

Suppose, for argument's sake, that the system is broken into two piec-
es, two sets of units. One piece is the one that we have been discussing
- it receives inputs and relaxes to an appropriate state that includes a
specification of an appropriate action, which will, in turn, change the in-
puts to the system. The other piece of the system is similar in nature, ex-
cept it is a 'model' of the world on which we are acting. This consists of
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a relaxation network that takes as input some specification of the
actions we intend to carry out and produces an interpretation of 'what
would happen if we did that.' Part of this specification would be expect-
ed to be a specification of what the new stimulus conditions would be
like. Thus one network takes inputs from the world and produces ac-
tions; the other takes actions and predicts how the input would change
in response. This second piece of the system could be considered a men-
tal model of the world events. This second portion, the mental model of
the world, would be expected to be operating in any case, inasmuch as
it is generating expectations about the state of the world and thereby
'predicting' the outcomes of actions.

Now, suppose that the world events did not happen. It would be pos-
sible to take the output of the mental model and replace the stimulus in-
puts from the world with inputs from our model of the world. In this
case, we would expect that we could 'run a mental simulation' and
imagine the events that would take place in the world when we per-
formed a particular action. This mental model would allow us to per-
form actions entirely internally and to judge the consequences of our
actions, interpret them, and draw conclusions based on them. In other
words, we can, it would seem, build an internal control system based
on the interaction between these two modules of the system. Indeed, we
have built a simple two-module model of tic-tac-toe that carries out ex-
actly this process and can thereby 'imagine' playing tic-tac-toe (cf.
Rumelhart et al. 1986). Figure 3.2 shows the relationships between the
interpretation networks, the inputs, the outputs, and the network, rep-
resenting a model of the world and the process of mental simulation in
PDP models. For example, it should be possible to have the system car-
ry out 'mental rotations' by applying a rotation model to some percep-
tual inputs. It also should be possible to build a system capable of doing
mental arithmetic by imagining doing arithmetic with pencil and paper
(see discussion of formal reasoning in the next section).

Formal Reasoning

Roughly speaking, the view is this: We are good at 'perceiving' answers
to problems. Unfortunately, this is not a universal mechanism for solv-
ing problems and thinking, but, as we become more expert, we become
better at reducing problem domains to pattern-matching tasks (of the
kind best accomplished by PDP models). Thus, chess experts can look
at a chess board and 'see' the correct move. This, I assume, is a problem
strictly analogous to the problem of perceiving anything. It is not an
easy problem, but it is one that humans are especially good at. It has
proven to be extraordinarily difficult to duplicate this ability with a
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Figure 3.2: The relationships between the model of the world, the interpretation network,
the inputs, and the outputs for the purpose of mental simulations.

conventional symbol-processing machine. However, not all problems
can be solved by immediately 'seeing' the answer. Thus, few (if any) of
us can look at a three-digit multiplication problem (such as 343 times
822) and see the answer. Solving such problems cannot be done by our
pattern-matching apparatus; parallel processing alone will not do the
trick; we need a kind of serial processing mechanism to solve such a
problem. Here is where our ability to manipulate our environment be-
comes critical. We can, quite readily, learn to write down the two num-
bers in a certain format when given such a problem:

343
822
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Moreover, we can learn to see the first step of such a multiplication
problem (viz., that we should enter a 6 below the 3 and 2):

343
822

We can then use our ability to pattern-match again to see what to do
next. Each cycle of this operation involves first creating a representation
through manipulation of the environment, then processing this (physi-
cal) representation by means of our well-tuned perceptual apparatus,
which leads to a further modification of this representation. By doing
this we reduce an abstract conceptual problem to a series of concrete op-
erations at which we can become very good. Now, not only does this ap-
ply to solving multiplication problems, it applies to solving problems in
logic (e.g., syllogisms), in science, in engineering, and so on. These dual
skills of manipulating the environment and processing the environ-
ment that we have created allow us to reduce very complex problems
to a series of very simple ones. This ability allows us to deal with prob-
lems that are otherwise impossible. This is real symbol processing and,
I am beginning to think, the primary symbol processing that we are able
to do. Indeed, on this view, the external environment becomes a key ex-
tension to our minds.

There is one more piece to the story. This is the tricky part and, I think,
the part that fools us. Not only can we manipulate the physical environ-
ment and then process it, we can also learn to internalize the represen-
tations we create, 'imagine' them, and then process these imagined
representations - just as if they were external. As I said before, I believe
that we are good at building models of our environment so that we can
anticipate what the world would be like after some action or event takes
place. As we gain experience with the world created by our (and oth-
ers') actions, we develop internal models of these external representa-
tions. We can thus imagine writing down a multiplication problem and
imagine multiplying the numbers together. If the problem is simple
enough, we can actually solve the problem in our imagination; similarly
for syllogisms. Consider, for example, a simply syllogism: All A are B
and no C are B. We could solve this by drawing a circle for A, a larger
circle including all of the A's around the first circle to represent the B's,
and a third disjoint circle standing for the C's. We could then 'see' that
no A's are C. Alternatively, we need not actually draw the circles; we can
merely imagine them. I believe that this ability to do the problem in our
imagination is derived from our ability to do it physically, just as out
ability to do mental multiplication is derived from our ability to do mul-
tiplication with pencil and paper. The argument that external

6
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representations play a crucial role in thought (or, say, in solving syllo-
gisms) is sometimes challenged on the grounds that we do not really
have to draw Venn diagrams (or whatever) to solve them since we can
solve them in our head. I suspect that the major way we can do that is
to imagine doing it externally. Since this imagination is dependent on
our experience with such representations externally, the argument that
we can solve them mentally loses its force against the view that external
symbols are important for thought processes.

It is interesting that it is apparently difficult to invent new external
representations for problems we might wish to solve. The invention of
a new representation would seem to involve some basic insight into the
nature of the problem to be solved. It may be that the process of invent-
ing such representations is the highest human intellectual ability. Per-
haps simply creating an external representation sufficient to support
problem solving of a particular kind is evidence of a kind of abstract
thinking outside of the simpleminded view sketched here. That may be,
but it seems that such representational systems are not very easy to de-
velop. Usually they are provided by our culture. Usually they have
evolved out of other, simpler such systems and over long periods of
time. Newer ones, when they are developed, usually involve taking an
older system and modifying it to suit new needs. One of the critical as-
pects of our school system would seem to be teaching such representa-
tional schemes. The insights into the nature of the problem become
embedded in the representations we learn to use to solve the problems.

Language plays an especially interesting role in all of this. Perhaps
the internal/external issue is not too important with language. The no-
tion here is one of 'self-instruction.' This follows Vygotsky's (1934/
1962) view, I believe. We can be instructed to behave in a particular way.
Responding to instructions in this way can be viewed simply as re-
sponding to some environmental event. We can also remember such an
instruction and 'tell ourselves' what to do. We have, in this way, inter-
nalized the instruction. I believe that the process of following instruc-
tions is essentially the same whether we have told ourselves or have
been told what to do. Thus, even here, we have a kind of internalization
of an external stimulus (i.e., language). I do not want to make too much
of this point because I recognize that the distinction between external
and internal when we ourselves produce the external representation is
subtle at best, but I do not really think it differs too much from the case
in which we write something down and therefore create a real, physi-
cally viewable representation. Saying something aloud creates a hear-
able representation. Imagining saying something aloud creates a
representation that can be processed just as if someone else had said it.
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Before leaving this topic, we should note one more important aspect
of external representations (as opposed to internal representations).
External representations allow us to employ our considerable perceptu-
al/motor abilities in solving abstract problems. This allows us to break
problems into a sequence of relatively simple problems. Importantly,
once an external representation is created, it can be reinterpreted with-
out regard to its initial interpretation. This freedom allows us to discov-
er solutions to problems without 'seeing' our way to the end. We can
inspect intermediate steps and find alternative solutions that might, in
some ways, be better. In this way, we can discover new features of our
representations and slowly extend them and make them more
powerful.

Conclusion

I have tried to show that three of the most common aspects of reasoning
can be naturally and simply produced by distributed memory systems.
I have argued that the memory system naturally supports reasoning by
similarity. I have argued that such a memory system coupled with a
prediction system offers an account of reasoning by mental simulation.
Finally, I have argued that formal reasoning is essentially the product of
carrying out a sequence of perceptual/motor operations on external
representations. I have suggested that these external representations
may only be imagined on any particular occasion. It should be noted
that these are all methods of coming to valid conclusions without the
need of an internal logic - natural or otherwise.

Note

1 There are actually a number of important details to the memory storage pro-
cedures that determine the detailed behaviour of such systems. The rule de-
scribed in the text is a variant of the so-called Hebbian learning rule.
Although this rule is simple, in many cases it is not adequate. A more com-
plex version of the rule for learning, which I call the generalized delta rule or
sometimes the back-propagation rule, would be required in a realistic situa-
tion. For present purposes it is sufficient to think of the Hebbian learning
rule.
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4
Connectionism without Tears

Mark S. Heidelberg

What accounts for the cool reaction to the emergence of connection ism
in the 1980s on the part of people who study language for a living? Most
of the critical assessments of connection ism that followed the initial ex-
plosion of interest in the approach came from people such as Beaver,
Odor, Pinker, and Prince, whose works are firmly situated within the
mainstream of linguistics and psycho linguistics. It will be an interesting
project for a future student of the history of ideas or the sociology of sci-
ence to investigate why, as Prince and Smolensky recently observed,
connection ism was seen as 'at best orthogonal and at worst antithetical
to the goals of linguistic theory.'1 This issue is of particular interest to
me as someone who was trained in the standard linguistic-psycholin-
guistic school of thought but has utilized connection's modelling tech-
niques in studies of language processing. My own work has been
grounded in the belief that connection ism and linguistics have more in
common than some of the more polemical critiques of the approach
would suggest. In this paper I will discuss some of the issues that have
tended to separate the two approaches and describe some potentially
interesting points of contact.

Activism and Empiricism

It is clear that many linguists view connection ism as a revival of the rad-
ical empiricist approach that dominated the dark ages in psychology-

'associationism/ a move that has the effect of eliciting, almost by reflex,
the intellectual and emotional antipathy that most linguists feel to-
wards the behaviourist account of language (establishing a kind of guilt
by association(ism)).2 Rumelhart and McClelland's (1986) claims as to
what their model of past tense learning showed about the acquisition of
language must surely have elicited widespread feelings of deja vu all
over again. I think that the attempt to equate connection ism with radi-
cal empiricism is a mistake. The correct point of contact is not with the
learning theories developed by the animal behaviourists of the 1950s

84

the behaviourist era. Pinker, in particular, equates connection ism with
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but, rather, with the learnability approach developed by the linguists
and psycholinguists of the 1970s and 1980s (for example, Wexler and
Culicover 1980; Pinker 1979; Baker and McCarthy 1981).3 Learnability
theory attempts to explain language acquisition in terms of several fac-
tors: the initial state of the organism (i.e., innate capacities that are prob-
ably species- and domain-specific), the steady state to be achieved (i.e.,
grammar), the input to the child ('Motherese' and other aspects of the
environment; Newport et al. 1977), and the child's capacity to learn. The
same factors govern the operation of connection's models. The initial
state of the organism can be equated with the initial configuration or ar-
chitecture of the model. Steady-state behaviour represents the target to
which the model should converge. The model's behaviour changes in
response to experience - the 'input to the child.' What connection ism
adds to the learnability approach is a novel way of representing knowl-
edge and a substantive theory of learning. The novel way of represent-
ing knowledge is in terms of weights on connections between units. The
substantive theory of learning is given by the many learning algorithms
that operate over networks employing these distributed representa-
tions. The main implication I draw from explorations of learning algo-
rithms such as back-propagation (Rumelhart, Hinton, and Williams
1986) is that far richer underlying structures can be recovered from far
noisier data than anyone ever imagined. (Indeed, the reinforcement
learning techniques of the behaviourists occupy a small and undistin-
guished corner in a very large space of learning algorithms.) Applica-
tions of such learning principles to human behaviour (for example,
Gluck and Bower 1988; Elman 1990; Hare 1990) suggest that they cap-
ture important aspects of at least some ways in which people learn.

At the same time, it is obvious that the behaviour of connection's
systems is highly dependent on their initial configuration. To the extent
that there is evidence that innate capacities govern the acquisition of
language (and I think there is), they can be straightforwardly incorpo-
rated in connection's models. McClelland and I provided a simple il-
lustration of this point with our model of word recognition and
pronunciation (Heidelberg and McClelland 1989). We described a sim-
ple multi-layer backprop net that was trained on a large corpus of
monosyllabic words and which simulated numerous aspects of peo-
ples' performance in behavioural experiments employing such stimuli
(subjects in these experiments perform tasks such as reading words
aloud or deciding whether or not strings of letters form words). The
model that closely simulated many aspects of skilled performance was
configured with 200 hidden units. We also replicated this simulation us-
ing an architecture that provided only 100 hidden units. The disabled
model could master some aspects of word recognition and naming but
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made systematic errors. The interesting part of this exercise was that the
pattern of performance exhibited by the disabled model resembled that
of some children who are dyslexic (i.e., fail to acquire age-appropriate
reading skills). Thus, whether the model performed like a skilled reader
or a dyslexic reader depended on its initial configuration - specifically,
whether it contained sufficient units and connections to encode all of
the information that the task demanded. One way to view these results
is that humans have an innate capacity to allocate different neural re-
sources to different tasks, such as reading or speaking (subject to con-
siderable plasticity; Neville 1988). For unknown reasons, dyslexic
children may dedicate too little in the way of neural resources to the
task of learning to read. Though speculative, this theory is suggestive in
light of recent evidence concerning morphological anomalies in the
brains of dyslexic children revealed by magnetic resonance imaging
(Hynd and Semrud-Clikeman 1989). In sum, the model's performance
is both consistent with and lends substance to the idea that tasks such
as learning to read are subject to biological constraints.

I realize that when linguists talk about innate capacities for language
they have in mind something more specific than a tendency for certain
brain areas to be recruited for certain tasks. The inventory of hypothe-
sized innate capacities includes language-specific knowledge struc-
tures, tendencies to analyse linguistic input in specific ways, and
constraints on the range of hypotheses that are formed, among others.
Connectionism is equally compatible with these ideas. Moreover, it pro-
vides a basis for exploring exactly how innate capacities of various sorts
would affect the course of acquisition. For example, it should be possi-
ble to determine why only certain types of generalizations are formed
given the starting configuration of the system, the input to the child,
and a specific learning algorithm. Again, our model provides a simple
illustration. The model addresses a certain range of phenomena con-
cerning word recognition. Our principal focus was on the acquisition of
knowledge concerning the correspondences between spelling and
sound. The goal was to understand the kinds of generalizations con-
cerning these correspondences that could be learned on the basis of ex-
perience. In its initial configuration the model was endowed with ways
of representing orthography and phonology. Although the correspon-
dences between the codes were learned, the codes themselves were not.
Thus the model tacitly embodies the idea that children who are learning
to read already possess considerable knowledge of the sound structure
of the language (for example, its phonemic inventory and phonotactic
constraints). Some of this knowledge is thought to derive from innate
capacities to analyse speech in special ways (for example, Liberman and
Mattingly 1985). In an admittedly oversimplified way (the phonological
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representation we used was, after all, Wickelphones), the model cap-
tures this idea. Our particular model did not address where these pho-
nological representations come from because that was not its primary
focus. Assume, for the sake of argument, that these aspects of phonolo-
gy are entirely innate. The model could then be taken as having exem-
plified how biological constraints of a certain sort constrain what can be
learned. The general point is that if, in fact, it is the case that knowledge
of some kinds of phonological distinctions (or of other aspects of lan-
guage) is innate, this can be represented in a net. It would certainly be
a reasonable goal, for the future, to endow such models with exactly the
innate capacities for which there is independent evidence.

These observations merely establish the simple point that connec-
tionism is compatible with nativism. More important, however, I think
that rather than being merely compatible with the nativist view, connec-
tionism is likely to provide what is needed in order to establish the es-
sential correctness of this view with regard to language. The
learnability equation I gave above seems to be the proper way to de-
compose the language acquisition problem but, unfortunately, it yields
an equation with more than one unknown. Rather more attention has
been focused on characterizing the steady state than on understanding
the learning component or the input to the child. Nonetheless, very
strong inferences about the initial state of the organism have been
drawn. This neglect of the role of learning is perhaps understandable
given the meager kinds of learning principles available during much of
the history of generative grammar. Lack of interest in learning may also
have contributed to a lack of attention to many aspects of the child's ex-
perience. Connectionism now provides an interesting theory of learn-
ing, motivating empirical studies of whether children utilize such
principles, and closer assessments of the behavioural input relevant to
the acquisition process. The important implication is that, with a seri-
ous theory of human learning nearly in hand, a better understanding of
the nature of the input to the child (for example, Fernald 1984; Hirsch-
Pasek, Treiman, and Schneiderman 1984), and a rigorous theory of the
structure of language (for example, Chomsky 1981), it may be possible
at last to solve for the final unknown in the equation - the biological en-
dowment of the child relevant to language. That there is such an en-
dowment seems obvious to me (see Heidelberg 1985a; Heidelberg and
Petitto 1987) but it is hard to be specific about exactly what is innate
without at the same time knowing what can be learned.

It is an empirical question, of course, but studies of connection's
learning suggest the possibility (in my view, the likelihood) that more
of the task of acquiring a language is accomplished by means of learn-
ing principles operating on relatively fragmentary, noisy input than
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was previously assumed. Although the same learnability equation is in-
volved, the division of labour among the various components may turn
out to be somewhat different than standard accounts suggest. It would
be a serious error to underestimate the power and importance of these
learning principles. They will force the reassessment of 'poverty of the
stimulus' arguments; puzzles that currently occupy child language re-
searchers, such as how the child escapes from incorrect generalizations
working only from positive exemplars, will disappear (connection's
models already learn without direct negative evidence). One of the re-
grettable consequences of the contentious way in which connection ism
was presented to linguists (for example, Rumelhart and McClelland
1986) and the strenuous way in which it was attacked (for example,
Pinker and Prince 1988) is that these points of contact between connec

conclude that the views expressed by Rumelhart and McClelland in
their 1986 paper exhaust the range of possibilities afforded by the
broader connection's framework, though I think that is what in fact
happened. Fortunately - in my view, it was inevitable - we are begin-
ning to see the appearance of research that exhibits an appreciation of
both the value of connection ism and of the facts about child language
that need to be explained (for example, Punkett and Marchman 1991). I
believe that as the polemics recede into the background, insights from
connection ism are likely to be absorbed by more of the people who
study language acquisition, with profound impact on our understand-
ing of the phenomenon.

Connectionism and Linguistic Explanation

As Prince and Smolensky suggest, the initial work that emerged from
the connection's framework could be seen as largely orthogonal to the
interests of theoretical linguists. One influential perspective was articu-
lated by Pinker and Prince (1988). They take the view that knowledge
of a language consists of knowledge of different kinds of systems of
rules. According to this view, the task of the linguist is to identify the
rules; the task of the child, to acquire them. Pinker and Prince observed
that connection's models such as the one proposed by Rumelhart and
McClelland (1986) fail to capture the rule-governed character of human
languages. The inadequacies of the Rumelhart and McClelland propos-
al abal about the English past tense led them to question whether connecout the English past tense led them to question whether connection's models could contribute to understanding other linguistic

phenomena. At best, they suggested, connection's models might im-
plement the kinds of rule systems posited within linguistic theory. Im-
plementing rule systems in connection's hardware might be a useful

tion ism and learnability theory were obscured. It would be incorrect to

tion's models could contribute to understanding other linguistic
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thing to do - it might contribute to understanding how the rules are re-
alized in the brain, for example - but in their view the important gener-
alizations are captured at the level of the rules themselves.

In light of the recent history of syntactic theory, it is ironic that the de-
bate about connection ism and symbolic systems in general, and about
connection ism and language in particular, was framed in terms of the
issue of rules. Whereas earlier theories (for example, Chomsky 1965) in-
corporated numerous structure-specific rules, current theories (for ex-
ample, Chomsky 1981) do not. Government-binding theory is
principle-based, not rule-based; a sentence is well-formed if it satisfies
the constraints imposed by the several modules in the grammar. In a
sense, well-formedness is treated as a constraint satisfaction problem
(Stabler 1991), which is certainly congenial to the connection's ap-
proach. Similarly, in current theories, language acquisition is not seen as
the process of acquiring rules but, rather, of setting parameters govern-
ing the range of possibilities afforded by universal grammar. The irony,
then, is that Pinker and Prince based their critique of connection's ac-
counts of language on a notion of rule that has little relevance to the
dominant theory in syntax, which has provided the intellectual core of
theoretical linguistics.

I am not prepared to speculate about the potential for convergence
between connection ism and syntactic theory; for some interesting,
though preliminary, work that is relevant to this issue see Berg (1991),
who describes a recurrent net that learns aspects of X-bar syntax. Leav-
ing syntax aside, the view of linguistic theory offered by Pinker and
Prince is still widely held in areas such as phonology and morphology,
and it is to these areas that I now turn. The fact that current syntactic
theory largely eschews the notion of rule (and especially rule-ordering)
compelled Bromberger and Halle (1989) to defend the proposition that
phonology is really different (insofar as it demands the use of these for-
mal mechanisms). Every phonological theory of which I am aware (au-
tosegmental phonology; metrical phonology; lexical phonology)
follows the Bromberger-Halle (Pinker-Prince) line about rules, though
they differ, of course, in terms of the types of rules allowed as well as in
other respects. Morphological theories typically embrace this approach
as well (but see Bybee 1985, for a somewhat different view).

The picture that Pinker and Prince draw is a tidy one. Linguists have
developed theories (for example, of phonology and morphology) em-
ploying certain kinds of rules; these theories are demonstrably correct
insofar as they capture important generalizations that would otherwise
be unexplained. This leaves connection ism with a dilemma: either con-

consistent with the notion of rule relevant to linguistic theory, or
nection's theories are wrong, insofar as they behave in ways that are in-
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they exhibit rule-governed behaviour, in which case they are mere
implementations.

I think that connection ism has more to contribute to understanding
language than the circumscribed role that Pinker and Prince assign to
it, and in the material that follows I attempt to establish why. Since I
cannot address all aspects of phonology and morphology for both prac-
tical and intellectual reasons, I will follow Pinker and Prince's lead and
focus on a narrow but interesting set of phenomena: the past tense of
verbs in English - the same phenomena that were at the center of their
celebrated critique. It might first be observed, however, that morpho-
logical theory in its current state is nowhere near as tidy as Pinker and
Prince imply. Morphology is probably the least developed of all the ma-
jor subareas of linguistic theory. Aside from the fact that there is no uni-
fying theoretical framework, there is debate about the range of
phenomena that constitute the subject matter of the field. Some aspects
of traditional morphology have been absorbed by phonology (for ex-
ample, Kiparsky 1982), others by syntax (Selkirk 1984), leaving unde-
cided whether morphology has a subject matter of its own and what its
boundaries are (Anderson 1982). The disagreements here run very
deep, and there are several competing theoretical frameworks.

English inflectional morphology (which includes past tense forma-
tion) is a rather simple system, and it might therefore be thought that,
whatever the theoretical debates about, for example, triliteral roots in
Arabic, there would be broad agreement about it. Such is not the case.
There is a general commitment to generating at least some past tense
forms by rule but exactly how many and what types of rules are in-
volved varies across theories. A common (though by no means univer-
sal) assumption is that the lexical component of the grammar contains
only a listing of idiosyncratic forms, such as irregular past tenses (so-
called strong alternations such as BRING-BROUGHT or SING-SANG).
However, which past tenses are irregular, and whether the irregularities
are morphological or phonological, are unclear. The problem is illustrat-
ed by the fact that whereas Pinker and Prince consider alternations such
as THINK-THOUGHT and SING-SANG to be idiosyncracies to be list-
ed in the lexicon, Halle and Mohanan (1985) derive them by rule
(THINK-THOUGHT, for example, is derived by a phonological rule the
only other application of which is to BRING to form BROUGHT). In
fact, Halle and Mohanan (1985) derive almost all strong verbs in En-
glish by rule. And theirs is not the only product in the marketplace.
There have been several theoretical analyses of inflection, including
past tense morphology, in the recent past and no one of them has come
to predominate. Even the basic nature of the phenomenon is undecided:
there are fundamental disputes as to whether the past tense and other
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aspects of inflection should be treated as part of an autonomous mor-
phological component, as phonological phenomena, or as part of syn-
tax (Anderson 1982; Spencer 1991).

In short, current treatments of inflectional morphology admit many
possibilities other than the view promoted by Pinker and Prince. The
lack of consensus about foundational issues, such as scope of morpho-
logical theory, calls into question their contention that existing linguistic
theories provide adequate accounts of the phenomena, which connec-
tionists could only aspire to implement.

Can a single mechanism accommodate both rules and exceptions?

Ignoring the technical disputes that animate current discussions of in-
flectional morphology, Pinker and Prince (1988) present an appealingly
simple view: regular past tense forms are generated by rule; irregular
forms are listed in the lexicon. The fact that identifying which forms are
irregular is itself a theoretical problem, and the fact that at least some
theories hold that even regular, rule-governed forms (for example, fa-
miliar ones) are listed (Halle 1973) does not figure in their discussion.
They present a generic framework much like the one developed by
Aronoff (1976). Aronoff's model takes the word as the primary unit of
morphological analysis, in contrast to theories based on other units, for
example, morphemes (Halle 1973). Words that are formed by entirely
regular, productive processes are not listed in the lexicon. Pinker and
Prince discuss a range of facts which they take to support the general
distinction between past tense forms that are generated by rule and
those that must be listed as exceptions. For example, the irregular pasts
include neighbourhoods of phonologically-similar pairs such as SING-
SANG and RING-RANG; the regular forms do not exhibit this cluster-
ing, because the rules can apply to any present tense form without re-
gard for its phonological composition. The McClelland and Rumelhart
model does not enforce this distinction and therefore, it is argued, can-
not capture these systematic differences between regular and irregular
forms. This raises questions as to whether any connection's system
could do better.

The general approach that Pinker and Prince present is not limited to
the past tense; there have been many attempts to characterize various
aspects of linguistic knowledge in terms of rules. The problem for such
theories is what to do with cases in which the rules fail. These cases
seem endemic to human language. Consider some examples. The writ-
ten form of English is alphabetic; hence there are systematic correspon-
dences between spelling and pronunciation. It is often assumed that
these correspondences can be formulated as rules; see Hanna, Hanna,
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Hodges, and Rudortf (1966), Wijk (1966) and Venezky (1970) for at-
tempts to list them. That the system is rule-governed seems to be indi-
cated by patterns such as MINT-LINT-SPLINT-HINT; that people know
such rules seems indicated by the fact that they can pronounce novel
strings such as BINT. On this view, then, one of the child's first tasks in
learning to read is to master these rules. Although (as in morphology)
there is no generally agreed-upon list of rules, it is clear that there will
be numerous exceptions to them, however they are formulated. What
kind of rules would accommodate minimal pairs such as MINT/PINT,
GAVE/HAVE, PAID/SAID, LEAF/DEAF and triples such as POSE/
DOSE/LOSE or COUGH/DOUGH/PLOUGH? Presumably items
such as COLONEL, CORPS, and ONCE will be treated as exceptions to
any felicitous set of rules. Thus, the spelling-sound correspondences of
English are apparently rule-governed, but the system admits many ex-
ceptions. As in the case of past tense inflectional morphology, there are
disagreements about the exact content of the rules, yielding uncertainty
as to which items are exceptions. For example, should DONE be listed
as an exception or generated by a minor rule that also applies to NONE
(analogous to Halle and Mohanan's rule that only applies to BEING-
BROUGHT and THINK-THOUGHT)?

The mapping between spelling and syllabification is another domain
that has received a rules plus exceptions analysis. Hansen and Rodgers
(1968) developed a set of rules for syllabifying written English words on
a strictly orthographic basis; these rules were later incorporated by
Spoehr and Smith (1973) into a theory of visual word recognition. The
rules work correctly in many cases, and the Spoehr and Smith research
suggests that they capture something about the way people process
words in reading. There again are cases where the rules fail, however,
illustrated by minimal pairs such as BAKED-NAKED, DIES-DIET, and
WAFVE-NAIVE.

Similar phenomena occur in other areas. As I have noted, the stan-
dard approach is to treat inflectional morphology as rule-governed but,
as Spencer (1991) notes, 'Inflectional morphology is notorious for being
morphologically idiosyncratic.' In English, of course, there is the past
tense, typically formed by adding /d/. This system is overwhelmingly
regular: there are about 4400 verbs in the Francis and Kucera (1982)
count, of which perhaps five percent are irregular forms such as RUN-
RAN or TAKE-TOOK. The irregular cases tend to cluster among the
higher frequency words in the language (see Heidelberg 1989, for a dis-
cussion of why they do); hence, on a token-wise basis, the percentage of
irregular forms is somewhat greater, though still less than for the regu-
lar forms. In short, there are both rule-governed cases and exceptions,
with the former greatly outnumbering the latter. The situation is similar
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with respect to forming the plural. There is a rule, add -s, as in PAN-
PANS or FAN-FANS; there are exceptions such MAN-MEN and
SHEEP-SHEEP (I am suppressing irrelevant details here concerning, for
example, the conditions that determine whether the -s is realized as
/s /,/z/, or /iz/).

Whereas inflectional morphology is relatively impoverished in En-
glish, derivational morphology is not. Many morphologists take as
their goal the formulation of rules that will account for facts such as the
following. A HEADACHE is a kind of ache in your head; a HEAD-
COLD is a kind of cold in your head; a HEADLINE, however, is not a
line in your head (that is a wrinkle). A DEADHEAD (in one sense) is a
person who likes the Grateful Dead; a POTHEAD is a person who likes
marijuana (and often Potheads and Deadheads are the same people).
An EGGHEAD, however, is not a person who likes eggs, a BEACH-
HEAD is not a surfer, and a BLACKHEAD is a kind of facial blemish.
Although it is possible to formulate rules governing the formation of
compounds in English (see Selkirk 1982 for discussion), it is doubtful
whether they could be formulated in such a way as to cover all cases
without admitting any exceptions.

Pinker and Prince's (1988) response to these sorts of phenomena is to
suggest that the goal of a proper theory (for example, of verb morphol-
ogy) should be the formulation of a set of rules that captures significant
generalizations. Properties of language such as the ones sketched in the
examples above seem to ensure that the kind of rules to which they are
committed will necessarily fail in many cases (the only way to avoid
this would be to have rules that apply to individual items, which would
trivialize the notion of rule). The proposal for what to do with these
anomalies is simply to list them separately. These are the items that will
have to be learned 'by rote.' Thus, the idea that language is rule-gov-
erned at various levels of structure (exemplified in the Pinker and
Prince paper by the treatment of past tense morphology) is preserved
by introducing a second descriptive mechanism - a list - to deal with
cases in which the rules fail.

It seems to me that any system can be described by a set of rules if the
rules do not have to apply to all cases. Pinker and Prince claim as a ma-
jor discovery of linguistic theory that languages are rule-governed at
different levels; however, it is hard to see how any other outcome would
have been possible, given their notion of rule and the existence of a sec-
ond means of accommodating all of the cases where the rules fail. This
is like saying that all of the observations in my experiment fit a particu-
lar hypothesis except for the ones that I have decided to exclude. Aside
from the fact that it seems a logical necessity that any set of phenomena
can be partitioned in this way, Pinker and Prince assert that this rules-
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and-exceptions approach accounts for facts about verb morphology
that would otherwise be unexplained. For example, it is thought to
explain why clusters of phonologically-similar past tenses (RING-
RANG, SING-SANG, etc.) only occur among the exceptions. Again,
however, it is hard to see how any other outcome could obtain. That
such similarity clusters as RING-RANG/SING-SANG exist is an inter-
esting fact (one that is itself in need of explanation, since it is easy to
imagine a system in which this patterning does not occur) but, given
their definition of the rule, it seems tautological that if such patterning
does occur it must be confined to the exceptions.

These logical considerations aside, it could be the case that the asser-
tion that knowledge consists of a set of rules and a list of exceptions is
merely true. Here it is worth returning to the area in which this idea has
been investigated most thoroughly, the mapping between spelling and
pronunciation. In so-called dual-route models of reading aloud, there
are two types of knowledge representation: a set of rules governing
spelling-sound correspondences (sometimes termed grapheme-pho-
neme correspondence rules) and a lexicon in which the irregular cases
must be listed (Coltheart 1978). There are also two pronunciation mech-
anisms: the pronunciations of rule-governed items are generated by ap-
plying the rules; the pronunciations of the words that violate the rules
are looked up in the list.

Dual-route models have been justified on a number of grounds (see
Carr and Pollatsek 1985 and Seidenberg 1985b for reviews). They devel-
oped in response to a variety of empirical phenomena concerning read-
ing aloud and the acquisition of this skill; they have also provided a
useful framework for studying some kinds of reading impairment that
occur as a consequence of brain injury (Patterson, Marshall, and Colth-
eart 1985). These models have also been justified on the basis of the in-
tuition that no single type of knowledge representation or process could
simultaneously account for the ability to read rule-governed items such
as GAVE, irregular items such as HAVE, and novel, nonword items
such as MAVE. Elsewhere I have termed this the 'central dogma' of
dual-route models (Seidenberg 1988). This view was put forward with
admirable clarity by Coltheart (1987):

A crucial implication of this distinction [between the two pronunciation
mechanisms], an implication around which much work on normal and abnor-
mal reading has been organized, is that the two procedures are not capable of
producing correct responses for every type of orthographic input ... The
word-level procedure allows correct reading aloud only when the ortho-
graphic stimulus is a word .... In contrast the subword level procedure guar-
antees correct reading aloud only when the orthographic stimulus is a
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regularly spelled word or a nonword. According to this general approach to
modelling oral reading, then, correct reading of nonwords requires a proce-
dure for subword-level translation from orthography to phonology, whereas
correct reading of words irregular in spelling-sound correspondences re-
quires a procedure for word-level translation (xvi).

There are now two connectionist models that directly contradict this
central dogma. Both the Sejnowski and Rosenberg (1986) NETtalk mod-
el and the Seidenberg and McClelland model generate phonological
codes for words on the basis of orthographic input. The models gener-
ate correct output for both 'rule-governed' cases such as LIKE and
TAKE and irregular cases such as HAVE and GIVE. The important
point is that within the limited domains in which these models operate
(for example, in the Seidenberg and McClelland model, the domain is
monosyllabic words), they illustrate the claim that connectionist nets
can generate both rule-governed cases and exceptions by means of a
single mechanism. These models appear to refute the central dogma as
it applies to spelling-sound knowledge.

The next question is whether a similar model could successfully ac-
commodate the past tense. One of the central claims of McClelland and
Rumelhart (1986) is that both rule-governed instances and exceptions
can be derived from a single underlying system of units and connec-
tions in learning the past tense. Pinker and Prince are correct in suggest-
ing that the McClelland and Rumelhart model of the acquisition of the
past tense does not substantiate this claim. As an account of an aspect
of child language (as opposed to a demonstration of some interesting
properties of connectionist networks), the model is fatally flawed. Leav-
ing aside this particularly unhappy case, it could be asked whether oth-
er attempts might be more successful in refuting the central dogma as it
applies to past tense acquisition.

The answer to this question is as yet unknown and will not be known
until someone develops a model that addresses the many important
empirical phenomena described in the Pinker and Prince paper and
other phenomena as well (see below). The many similarities between
the system of spelling-sound correspondences and the past tense in En-
glish are certainly suggestive, however. Both systems are 'rule-gov-
erned' but admit many exceptions; in both cases the exceptions tend to
cluster among the higher frequency words in the language and thus are
overrepresented among the words to which the child is first exposed. In
fact, the spelling-sound system exhibits all of the differences between
rule-governed cases and exceptions that Pinker and Prince (1989:188)
ascribe to verbs:
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(a) Irregular verbs cluster into "family resemblance groups" that are
phonologically similar: BLOW/BLEW; GROW/GREW; THROW/
THREW.' Irregularly pronounced words also cluster: DONE/NONE;
PUSH/BUSH; BREAK/STEAK.

(b) Irregular pasts can be fuzzy in their naturalness of acceptability ...
In contrast regular verbs, unless they are similar to an irregular clus-
ter, have no gradient of acceptability based on their phonology.' The
spelling-sound correspondences of COLONEL, ACHE, and BREAST
seem less natural than those of KERNEL, TAKE, and BEAST.

(c) There are no sufficient conditions for a verb to be in any irregular
class: though BLOW becomes BLEW in the past, FLOW becomes
FLOWED; though RING becomes RANG, STRING becomes
STRUNG and BRING becomes BROUGHT. In contrast, a sufficient
condition for a verb to be regular is that it not be irregular.' HAVE-
GAVE; SAID-PAID; BONE-DONE-GONE.

(d) Most of the irregular alternations can only apply to verbs with a
certain structure: the pattern in 'send/sent/ namely to change a d to
a t, requires that there be a d in the stem to being with. The regular
rule, which adds a -d to the stem, regardless of what the stem is, can
cover all possible cases by its very nature.' I am not clear what is being
claimed here, other than that the exceptions are idiosyncratic pat-
terns. However, the pattern -AVE requires the letter H in the initial
position in order to change to /av/and similarly for other cases.

In summary, I hope to have established that, inadequacies of the
Rumelhart and McClelland verb learning model aside, the idea that a
single system might be responsible for both rule-governed items and
exceptions is quite viable; in at least one domain there are existing mod-
els that implement the idea. It remains to be determined whether a sim-
ilar account will apply to the past tense. However, the kinds of
phenomena that Pinker and Prince take to implicate very different
types of knowledge representations and processing mechanisms for
rule-governed items and exceptions, and to be incompatible with con-
nectionist models, also occur in the domain of spelling-sound corre-
spondences, for which plausible models already exist. A number of
people who attended closely to Pinker and Prince's critique of the
Rumelhart and McClelland model have begun developing successors
to it (for example, Plunkett and Marchman 1991; MacWhinney in press;
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Cottrell and Plunkett 1991). It therefore seems likely that we will soon
have a clearer picture of the relevance of connectionist models to verb
learning. Although none of the existing models as yet achieves descrip-
tive adequacy, a number of interesting results have been achieved. Both
the models of MacWhinney (in press) and Cottrell and Plunkett (1991)
use a single network to generate both regular and exceptional past tens-
es. It will be interesting to determine whether extensions of these
models or others like them will be able to accommodate the entire range
of facts.

Are rules and exceptions sufficient?

To this point I have argued that systems of knowledge that have the
character of past tense morphology in English are compatible with
known properties of simple connectionist networks. In light of the con-
troversy that followed the Rumelhart and McClelland (1986) model I
should stress that in the absence of an adequate, implemented model
these observations are merely suggestive. For the sake of argument, let
us assume that an adequate a model could be constructed. Two related
questions then arise. One concerns whether such a net would merely
implement the two mechanisms that Pinker and Prince envision. For
example, the network might partition itself so that some units and con-
nections are dedicated to implementing the rules and others to imple-
menting the list of exceptions. The second question concerns whether
there would be any way to determine which is the correct account. In
this section I will present evidence suggesting that peoples' behaviour
departs from that which would be expected if their knowledge of the
past tense were represented in terms of rules. Moreover, I will argue
that these departures from orderly rule-governed behaviour can be un-
derstood in terms of simple properties of connectionist networks.
Therefore, the connectionist approach is to be preferred because it cap-
tures generalizations that the rules-and-exceptions approache misses.
These considerations also suggest a somewhat different relationship be-
tween connectionism and linguistic theory than Pinker and Prince's
'implementational' view.

As noted above, Pinker and Prince's view of the past tense is that it
involves two types of knowledge: a set of rules and a list of exceptions.
These, in turn, involve two types of learning: inducing a set of rules and
learning the exceptions 'by rote.' Prasada, Pinker, and Snyder (1990)
further assume that these types of knowledge entail different process-
ing mechanisms: the rule-governed cases are generated; the exceptions
are looked-up from storage in memory. They present the results of reac-
tion time experiments in which subjects generated past tense forms
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aloud. The data were seen as supporting the distinction between gener-
ating output by rule versus lexical lookup, and they offer logical
arguments suggesting that the phenomena cannot be properly under-
stood without making this distinction. This is the central dogma that I
questioned previously, that is, that no single type of knowledge repre-
sentation or process can simultaneously handle both the rule-governed
cases and exceptions.

Models such as Seidenberg and McClelland's (1989) inspire the fol-
lowing alternative account. Knowledge of the past tense is encoded by
weights on connections between units representing different types of
knowledge (orthographic, phonological, grammatical, etc.). Learning
involves adjusting the weights on the basis of experience. All forms are
generated by a single process (for example, taking the present tense
stem as input, along with other relevant information such as meaning,
and computing the past tense as output). There are no rules in this type
of model and no listing of irregular forms. The idea of a list of lexical en-
tries is especially incongruent with this approach; in models of the lex-
icon employing distributed representations, there are no units or pools
of units dedicated to individual words (see also Hinton 1986). Each
word form is represented by a pattern of activation over one or more
sets of units; each unit participates in the representation of many words.

As I have noted, the same theoretical alternatives arose in connection
with spelling-sound knowledge. In the latter domain, however, there
have been many studies of subjects' use of this knowledge under vari-
ous conditions. There is a large body of data that is quite revealing
about how this knowledge is represented and used, and it is sufficient
to strongly call into question the dual-route account. In reading, the ad-
equacy of the dual-route model began to be questioned because of the
discovery of some unexpected phenomena that have come to be called
consistency effects. The seminal study was by Glushko (1979). In the
dual-route model, a word such as MUST is rule-governed and HAVE is
an exception. Glushko asked a deceptively simple question: what about
words such as GAVE? Under any plausible construal of the notion,
GAVE is rule-governed. The rule presumably applies productively to
SAVE, PAVE, RAVE and other words and can be used to pronounce
nonsense words such as MAVE. However, the pronunciation of the
-AVE pattern is inconsistent, owing to the irregular neighbour HAVE.
In Glushko's experiments, subjects read such words aloud and their re-
sponses were timed. Subjects who are skilled, college-student readers
perform this task at a high level of accuracy. Glushko replicated the ear-
lier finding that irregular words (such as HAVE or SAID) take longer to
pronounce than do regular words (such as MUST or LAKE). Unexpect-
edly, however, he found that so-called inconsistent words such as
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GAVE or PAID also took significantly longer to read aloud than did en-
tirely regular words. These results are important because both the
regular and inconsistent words are rule-governed according to the stan-
dard dual-route approach. If such items were pronounced by applying
rules, the two classes should have behaved alike. However, the incon-
sistent words yielded longer latencies due to the irregular neighbours.

Subsequent studies replicated the basic consistency effect but clari-
fied it in a number of respects (see Jared, McRae, and Seidenberg 1991
for review). First, the effect is correlated with frequency: lower frequen-
cy words show larger effects, and among the highest frequency words
in the language the effects are small or nonexistent. Second, the effects
depend on reading skill: faster, more skilled readers show smaller ef-
fects. Third, the magnitude of the effect depends on the ratio of a word's
friends and enemies. The friends of GAVE, for example, are all the
rhyming -AVE words. Its only enemy is HAVE. Thus, regular words
have many friends but no enemies; exception words have few friends
and many enemies; and inconsistent words fall in-between. Jared et al.
(1990) showed that the ratio of friends and enemies accounts for the re-
sults of about fifteen studies of consistency effects in the literature.

The important conclusion to be drawn from this research is that the
generalization that accounts for word naming latencies is not whether
they are rule-governed or exceptional. Rather, the correct generalization
concerns the degree of consistency exhibited across a neighbourhood of
similarly spelled items. The standard dual-route account suggests that
the latency to pronounce a word should only depend on properties of
the word itself: its frequency, length, and whether it is rule-governed or
irregular. The empirical studies show that this assumption is false. La-
tencies systematically depend not only on the properties of the word it-
self but also on their neighbours. Thus, mechanisms for generating
the pronunciations of words must take into account these relations
among words.

The Seidenberg and McClelland (1989) model simulates these effects
quite closely. The model was trained on a corpus of 2897 monosyllabic
words, including almost all of the words used in studies of consistency
effects. Hence it is possible to simulate each experiment using the same
items as in the study. The naming latencies of the subjects are compared
to an error score that is a quantitative measure of the model's perfor-
mance. The fit between mean naming latencies and error scores for the
same items is typically very good. Figure 4.1 provides a summary of the
results of a study by Jared et al. (1990). The stimuli in the experiment
were lower frequency inconsistent words (such as TINT, which is incon-
sistent because of PINT) and two control groups of matched regular
words. All of the stimuli would be considered rule-governed in the
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Word Type
Figure 4.1: Results of an experiment on consistency effects (Jared et al. 1990). The 'friends

match' and 'neighbours match' are two groups of entirely regular, rule-governed
items.

dual-route account; however, the inconsistent items, which have ene-
mies, yielded significantly longer naming latencies than did the regular
words. As the figure indicates, the model produced very similar results.
Many other simulations of this type are reported in Seidenberg and
McClelland (1989) and Jared et al. (1990).

The explanation for why the model performs this way is simple. The
weights mediating the computation from orthography to phonology
encode facts about the frequency and consistency of spelling-sound cor-
respondences in the lexicon. The model accounts for effects of lexical
frequency (for example, McRae, Jared, and Seidenberg 1990) because
frequency determines how often a word is presented during the train-
ing phase; words that are presented more often have a bigger impact on
the weights. For the same reason, the model performs better on words
containing sublexicai spelling patterns that occur in many words. Thus,
the model performs better on words containing spelling patterns that
are consistently associated with a single pronunciation (for example,
-UST in MUST, -IKE in LIKE) compared to inconsistent patterns associ-
ated with more than one pronunciation (for example, -OWN in TOWN,
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BLOWN). These outcomes are simply a consequence of how the learn-
ing algorithm operates given a significant fragment of the English
lexicon with which to work. Multiple exposures to consistent patterns
such as -UST push the weights towards values that are optimal for pro-
ducing the correct phonological output. Performance on inconsistent
patterns such as -OWN is somewhat poorer because training on a word
such as TOWN has a negative effect on the weights from the point of
view of BLOWN and vice versa. In such cases, given sufficient training
on the words, the model produces output that is closer to the correct
pronunciation than to the alternative pronunciation of the inconsistent
spelling pattern; however, error scores (the discrepancy between com-
puted and veridical phonological codes) are larger than in the case of
entirely consistent words.

The model's behaviour closely corresponds to that of human subjects
asked to read words aloud; its performance is better on the words that
subjects find easier and worse on the words they find more difficult.
The accuracy of the model is such that it correctly simulates latency dif-
ferences on the order of 15-25 msec. Many earlier studies of how sub-
jects name different types of words aloud employed taxonomies of
word types based on different assumptions about the nature of pronun-
ciation rules and the perceptual units relevant to pronunciation (see
Patterson and Coltheart 1987 for review). The model shows that the cor-
rect generalizations about naming performance derive from a deeper
principle concerning the learning process.

These results have important theoretical implications. The inconsis-
tency effects, which are exhibited by people and correctly simulated by
the model, are not predicted by standard dual-route models, in which
the fundamental distinction is between rule-governed words and ex-
ceptions. This dichotomy is not rich enough to capture facts about hu-
man performance. Highly regular words such as MUST and highly
exceptional words such as CORPS represent different extremes on a
continuum of spelling-sound consistency. Inconsistent words such as
TINT or LEAF represent intermediate cases; they appear to be regular,
'rule-governed' items, but the naming of these items is in fact affected
by knowledge of exception-word neighbours such as PINT and DEAF.
Consistency effects are somewhat smaller than suggested by Glushko's
(1979) original work but they can be detected with careful experimenta-
tion (see Jared et al. 1990), and they are theoretically important. Any
number of theories can explain why a word with an irregular pronun-
ciation might be more difficult to name than a regular word. However,
the data indicate that differences among word types in terms of naming
difficulty depend on the degree of consistency in the mapping between
spelling and pronunciation. These differences in degree are realized in
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the model by the weights on connections, which reflect the aggregate ef-
fects of training on a large corpus of words.

Consistency of the past tense. With this background in hand, we can
return now to the past tense. I previously argued that past tense inflec-
tion is analogous to spelling-sound correspondences in important re-
spects and suggested that the two sets of phenomena might be
explained by similar sorts of computational mechanisms. If this analy-
sis is correct, it predicts that we should be able to observe analogous be-
havioural phenomena in the two domains. In particular, there should be
consistency effects in the generation of the past tense. According to
Pinker and Prince, WALK-WALKED is rule-governed and TAKE-
TOOK is 'listed.' The 'Glushko question' for verbs, then, is what about
BAKE-BAKED which, like TINT in the domain of spelling-sound corre-
spondences, is rule-governed but inconsistent; its enemies are TAKE-
TOOK and MAKE-MADE. Other examples are MIND-MINDED (in-
consistent because of FIND-FOUND) and PUN-PUNNED (the enemy
is RUN-RAN).4

Maggie Bruck and I (Seidenberg and Bruck 1990) examined these
types of words in an on-line production task. On each trial subjects were
shown a verb in the present tense, such as BAKE. Their task was either
to name the word aloud or to generate its past tense. Subjects per-
formed the tasks in two sessions separated by at least a week. Each sub-
ject performed both tasks; order of tasks was counterbalanced across
subjects. The stimuli included fifty 'rule-governed' verbs with entirely
regular past tenses, and fifty verbs with regular past tenses but one or
more irregular neighbours (the 'inconsistent' items). There were also fif-
ty-eight verbs with irregular past tenses included as filler items to keep
subjects attending closely to the task. The regular and inconsistent
items were closely matched in terms of properties of both the present
and past tenses. We also chose the items so that, on average, the items
in the two conditions had the same number of regular past tense neigh-
bours. In this way we attempted to ensure that both the regular and in-
consistent items involve 'rules' that are used about equally often in the
language. The only systematic difference between the conditions was
that the inconsistent items have enemies. The principal goal was to ex-
amine how past tense generation latencies relate to consistency. The
present tense naming task was included in order to be certain that any
differences in past tense generation times were not due to differences in
the processing of the base words. The predictions should be clear: If the
regular past tense is generated by rule, inconsistent past tenses such as
BAKE-BAKED should yield the same results as entirely regular pasts
such as WALK-WALKED. However, if the pattern of consistency across
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Figure 4.2: Results of the Seidenberg and Bruck (1990) study on past tense generation.
Stimuli in both conditions were 'rule-governed ', however, the inconsistent items have
enemies.

a neighbourhood of similarly-spelled forms is relevant, it should be
harder to generate the past tenses of the inconsistent words.

The results, summarized in Figure 4.2, exhibit a strong, statistically
reliable consistency effect. There were also 2 percent more errors in the
inconsistent condition. In contrast, naming latencies for the present
tense bases did not differ reliably in either latency or errors. One other
interesting result was that for the inconsistent words, the latency to gen-
erate the past tense was related to the number of enemies, r (48) - .38,
p < .01. The inconsistent words varied in terms of the number of ene-
mies. Thus, items such as PICK-PICKED, whose only enemy is STICK-
STUCK, were easier than items such as BLINK-BLINKED (whose ene-
mies include SINK-SANK, THINK-THOUGHT, etc.).

The simplest interpretation of these results is that the regular past tense is
not generated by rule. Rather, there is a computation over a neighbour-
hood of similarly-spelled patterns. As in the case of spelling-sound cor-
respondences, it is the degree of consistency that captures the relevant
generalization, not whether the item is 'rule-governed' or 'listed.'

As it happens, Prasada et al. (1990) also reported an experiment in
which subjects generated the past tenses of verbs. They arrived at a
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somewhat different conclusion, however. Their experiment involved
regular, rule-governed items and exceptions. In one case, they varied
the frequencies of the present tense stems (as measured by the Francis
and Kucera 1982 norms); thus, there were separate groups of high and
low frequency regular and irregular items. The groups were equated,
however, in terms of the frequencies of their past tenses. Hence, base
word frequencies varied but past tense frequencies were the same. In a
second condition, the stimuli in the two groups were equated in terms
of base word frequencies but varied in terms of past tense frequencies
(high versus low). As in our experiment, subjects saw the base word
and generated the past tense. Prasada et al.'s results indicate that
whereas the frequency of the base form affects the generation of both
regular and irregular past tenses, the frequency of the past tense form
itself was only relevant for irregular pasts. That is, the difference in fre-
quency between TOOK (high frequency irregular) and BENT (low fre-
quency irregular) affected response latencies, but the difference
between LOOKED (high frequency regular) and BASKED (low fre-
quency regular) did not.

Prasada et al. interpreted these results as support for the dual-route
model. According to this account, regular past tenses are generated by
rule. Overall latencies therefore consist of two components: the latency
to identify the present tense stem (i.e., lexical access for LOOK) and a
constant reflecting the time needed to apply the rule. Latencies to gen-
erate irregular past tenses also consist of two components: lexical access
for the stem (for example, TAKE) and the amount of time it takes to find
the irregular past tense listed in the mental lexicon. Importantly, the lat-
ter component is not a constant; it depends on the frequency of the
word, under the assumption that the search process is frequency-or-
dered. It follows that the frequency of the base word affects both regular
and irregular past tense generation, but the frequency of the past tense
only affects the irregulars. Insofar as the data were in accord with these
predictions, they were seen as confirming the dual-route account.

Bruck and I obtained very similar results using a slightly different de-
sign. The stimuli in our study were forty verbs with regular past tenses
and forty with irregular past tenses. The present tense stems in the two
conditions were equated in terms of Kucera and Francis (1967) frequen-
cy, length, and initial phoneme. Thirty subjects performed the two tasks
described previously: naming the present tense base words aloud and
generating the past tense forms. The tasks were again performed
in separate sessions several days apart, with the order of tasks
counterbalanced across subjects. The results are summarized in Figure
4.3. As in our previous experiment, naming latencies for the two types
of present tense stems did not differ and they both yielded less than 1
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Figure 4.3: Results of the Seidenberg and Bruck (1990) study on past tense generation.
Stimuli were either regular, rule-governed items or irregular, exception items.

percent errors. However, it took longer to generate the irregular past
tense, and these words produced about 10 per cent more errors. Sub-
tracting the stem naming latency from the past tense generation latency
yields a net generation effect of 349 msec for the regular past and 456
msec for the irregular past. Thus, familiar irregular past tenses take
about 100 msec longer to generate, even for skilled college student
readers.

We also addressed the role of frequency by performing a median split
on the lemma frequencies of the present tense stems. This yielded
groups of high and low frequency stems for regular and irregular past
tenses. Figure 4.4 presents the net past tense generation effects in these
groups. Two findings should be noted: First, the difference between the
regular and irregular conditions is larger for lower frequency words
than high; second, there is a frequency effect for irregular past tenses
but not for regular past tenses. This pattern is consistent with Prasada
et al.'s results, which they took as evidence for the dual-route model.

Note, however, that the same pattern of results has repeatedly been
observed in studies of spelling-sound correspondences. In these
studies, the regularity effect (the difference in latency for exception
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Frequency of the Present Tense

Figure 4.4: Data from the same experiment as in Figure 4.3, broken down by frequency.

words such as HAVE and regular words such as MUST) is larger for
lower frequency words (Seidenberg 1985c). At the same time, frequency
effects are smaller for regular words than they are for exceptions. The
absolute size of the frequency effect for regular words depends on the
range of frequencies sampled, but the effects are clearly smaller than for
exceptions. Figure 4.5 presents the results of one representative study,
by Waters and Seidenberg (1985), illustrating these effects. Data con-
cerning the model's performance on the same words are also presented.

The Seidenberg and McClelland model simulates this frequency by
regularity interaction quite closely. Hence, it exhibits the pattern of be-
haviour that Prasada et al. took as evidence for the dual-route model -
even though it only has a single route. Specifically, it exhibits both the
effect they interpreted as evidence for rule-use (minuscule frequency
effects for regular items) and the effect that provided evidence for lexi-
cal-lookup (larger frequency effects for irregular items). However, it
shows that these effects derive from the same source, namely, the effects
of repeated changes to the weights during the training phase. Seiden-
berg and McClelland provided a detailed explanation of the factors that
govern the model's behaviour. Performance on any given word is a
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Figure 4.5: Data from an experiment by Waters and Seidenberg (1985) illustrating the fre-
quency by regularity interaction in the naming of monosyllabic words.
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function of the entire ensemble of training experiences. This is because
all the changes to the weights that occur during learning are superim-
posed on each other. Hence, the weights reflect the aggregate effects of
training on the entire corpus. For a given word, the factor that has the
biggest impact on performance is the number of times the model was
trained on the word itself. In this way lexical frequency has an impact
on performance. However, performance is also affected by exposure to
similarly-spelled neighbours; thus, performance on GAVE is affected
by exposure to GAVE but also by neighbours such as SAVE and HAVE.
There are also small effects due to more remote neighbours such as
GIVE or MATE. The effects of these neighbours modulate effects of lex-
ical frequency. As the number of neighbours (specifically, friends) goes
up, the effects of number of exposures to the word itself decrease. Intu-
itively, mastering the pronunciation of GAVE is not highly dependent
on exposure to GAVE because the model also benefits from SAVE,
PAVE, and RAVE. In contrast, mastering the irregular pronunciation of
HAVE is highly dependent on sufficient exposure to the word itself.
Thus, frequency of exposure has a bigger impact on irregular patterns
than on regular ones. For highly regular patterns with many friendly
neighbours, effects of lexical frequency may be washed out entirely.

The claim here is that exactly the same factors govern latencies to
generate the past tense. The regular, rule-governed patterns are highly
productive. Hence, learning the past tense of words such as LOOK or
LIKE is not highly dependent on the frequency of exposure to them.
The correct past tenses can also be inferred on the basis of exposure to
other regular, rule-governed forms. In contrast, learning the correct past
tense of TAKE requires exposure to TOOK; therefore, performance is
highly dependent on frequency. It follows from this view that frequency
of the past tense should be a salient factor for irregular pasts but not for
regular pasts, as in the data.

In summary, both Prasada et al. and Seidenberg and Bruck observed
for past tense generation a frequency by regularity interaction like the
one that has been observed for spelling-sound correspondences. The
Seidenberg and McClelland model provides a simple account of the lat-
ter effect in terms of changes to the weights during learning. This sin-
gle-process model obviates the need for a set of rules and a list of
exceptions and suggests that a similar account should apply to past
tense generation. Moreover, the Seidenberg and McClelland model also
correctly predicts the effects of spelling-sound consistency observed in
studies such as Glushko's (1979) and Jared et al.'s (1990), whereas the
dual-route model did not. These consistency effects have now also been
observed in past tense generation as well.
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Error data. Subjects' errors on the past tense generation task also pro-
vide information that helps to differentiate between the theoretical al-
ternatives. It is necessary to consider for a moment how errors might be
generated within a dual-route model. The proposal is that regular past
tenses are generated by rule rather than by being listed in the lexicon;
irregular past tenses are produced by finding the forms in a memory list
rather than by rule-application. A problem that arose with regard to the
earlier, dual-route model of pronunciation was how the reader would
know which route to use for any given input word. That is, if words are
not labelled as 'regular' or 'irregular,' how does the reader know
whether to pronounce by rule or to search for the irregular form? The
usual answer to this is that both routes are tried in parallel, with a race
between them (Meyer et al. 1974; Paap and Noel 1989). This proposal in-
troduces other problems (for example, what happens when the routes
yield different pronunciations), although I would say that they are un-
resolved rather than necessarily wholly intractable. In any case, Prasa-
da et al. (1990) did not present a detailed process model addressing
these issues. It would have to be assumed, however, that somehow the
subject knows whether to apply a rule or to search the lexicon in gener-
ating the past tense for a given word. For example, words could carry
tags indicating whether their past tenses are regular or irregular. An er-
ror would then result from reading the tag incorrectly; words with reg-
ular past tenses might be treated as irregular and vice versa. If a verb
with an irregular past tense were mistakenly treated as though it were
regular, the subject should produce a regularization error (for example,
RUN-RUNNED). If a verb with a regular past tense were mistakenly
treated as though it were irregular, however, it is not clear what kind of
error should result. The subject would presumably initiate an unsucess-
ful search through the mental lexicon. Under these conditions, the sub-
ject might respond with another irregular past tense found in the list,
apply the regular rule as a default, or make no response at all.

Subjects' actual errors suggest a somewhat different picture. Errors
seem to result from drawing incorrect analogies to neighbours. Table 1
presents the errors that occurred in generating past tenses for inconsis-
tent verbs such as SIGHT in the first Seidenberg and Bruck (1990) exper-
iment. Recall that the correct responses to these verbs always involve
the regular, -ED pattern. Some of the errors (such as STREAK-STRUCK)
are congruent with the dual-route model's suggestion that errors in
generating the regular past tense would come about by mistakenly
searching the list of irregular past tenses stored in memory and produc-
ing one of them as output. Thus, STRUCK is the correct irregular past
tense of STRIKE not STREAK. However, most of the errors were not of
this sort. The most frequent error was one in which the subject
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produced an incorrect past tense that was analogous to an irregular past
tense in a nearby neighbourhood. Thus, SIGHT was pronounced
SOUGHT by analogy to FIGHT-FOUGHT; THRIVE-THROVE by anal-
ogy to DIVE-DOVE, and GLIDE-GLID by analogy to HIDE-HID. An-
other interesting set of errors occurred when subjects incorrectly
produced past tenses that were identical to the present tense forms.
These are analogous to rare items such as HIT and BEAT, which have
identical present and past tense forms. Thus, the subjects responded
with BLIND as the past tense of BLIND (instead of BLINDED) and
SKID as the past tense of SKID (instead of SKIDDED).

Errors such as GLIDE-GLID suggest that subjects were generating
the past tenses by analogy to other forms. GLIDE sounds like HIDE,

Table 4.1: Errors on the Regular But Inconsistent Verbs Used in Seidenberg and Bruck's
Experiment 1

Vowel changes:

sight-sought (13)
thrive-throve (5)
weave-wave (3)
glide-glid (2)
squeeze-squoze (2)
streak-struck (2)
streak-stroke (1)

No change errors:

blind (2)
brand (1)
free (2)
skid (1)
slow (2)
thread (2)
wing (1)

Other errors:

sight-saw (4)
lean-leant (4)
smell-smelt (7)
trust-thrusted (1)
rig-ringed (1)
streak-shrieked (1)

No response: (7)

Note: Number of errors given in parentheses.
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therefore the past tense should sound like HID. The same process
would also produce errors such as SIGHT-SOUGHT and 'no change' er-
rors as well. Thus, the errors that occurred for the regular but inconsis-
tent verbs seem to reflect the effects of similarly spelled or pronounced
neighbours. This is congruent with the hypothesis that the past tense is
generated by means of a computation that reflects relationships among
a neighbourhood of words rather than by simply applying a rule. The
'analogy' process is realized in the weights, which reflect the degree of
consistency in the mapping between input (for example, present tense)
and output (for example, past tense) forms.

For verbs with irregular past tenses, the only error that is expected on
the dual-route account would be a regularization such as RUN-
RUNNED. Some of these errors did occur (Table 4.2): KNOWED,
HURTED, and FIGHTED are examples. However, subjects also pro-
duced a variety of other errors. Some were no-change errors; thus, in the
case where the subject generated KNOW as the past tense of KNOW, he
produced an irregular, no-change past tense but not one that would be
'listed' in the lexicon as the past tense of some other verb. Subjects also
produced analogies that formed nonwords, such as SEEK-SOOK. These
errors are especially important because they could not result from ei-
ther mistakenly applying a rule or accessing the incorrect entry in the
mental lexicon. Subjects also incorrectly produced some past participles
such as SEE-SEEN. Again, the errors seem to reflect relationships be-
tween the stimulus verb and similarly spelled or pronounced neigh-
bouring words rather than mere application of a rule. The very similar
types of errors produced for both regular and irregular past tenses
strongly suggest that these forms are generated by means of a common
process. I should add that subjects produce similar errors in studies of
naming monosyllabic words aloud. In reading familiar irregular words
such as HAVE or DEAF, subjects sometimes produce regularizations
(/hAv/, /dEf/), but they also produce other types of errors (HAVE-/
hIv, DEAF-/det/). Conversely, regular but inconsistent words are
sometimes incorrectly read by analogy to exceptions, for example,
GAVE-/gav/ or TOWN-/tOn/.

In summary, three phenomena have been observed in these studies of
past tense generation. First, subjects exhibit consistency effects for en-
tirely regular, rule-governed past tenses such as BAKE-BAKED; second,
frequency effects are bigger for the irregular past tense than for the
regular past tense; third, errors reflect relationships between a word
and its neighbours. These effects also occur in the domain of spelling-
sound correspondences, and the Seidenberg and McClelland model
simulates them closely. These observations strongly suggest that it



112 Connectionism: Theory and Practice

Table 4.2: Errors on the Irregular Verbs Used in Seidenberg and Bruck's Experiment 2

Regularizations

knowed
hurted
kneeled
fleed
holded
fighted
ridded

No change errors:

know

(1)
(2)
2)

(1)
(3)

(1)
(1)

flee
fall
run
draw
slide
stand
mean
stick

Past tenses of other words:

flee-flew
rid-rode
run-rung

Past participles:

seen
given
ridden
eaten
driven
broken
frozen
beaten
stolen

Other errors:

seek-sook
dig-dag
strike-stroke
lose-loose
swim-swum
fall-fail
mean-meent
give-gaved
steal-stoled

(3)
(1)
(1)
(1)
(1)
(1)
(4)
(1)

(8)
(3)
(1)

(1)
(1)
(3)
(2)
(2)

(2)
(1)

(1)
(1)
(2)
(1)
(2)
(1)
(1)
(1)
(2)

Note: Number of errors given in parentheses.

(1)
(1)
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would be worth pursuing the single-route, connectionist approach to
modelling the past tense.
Generalization. Before closing this discussion the important issue of
generalization must be considered. Perhaps the quintessential property
of a rule is that it can account for both known instances and the ability
to generalize to novel instances. Thus, in the classic Berko (1958) study
of children's knowledge of morphology, the inference that they had for-
mulated a rule for the plural was based on the production of novel
forms such as WUGS. It is obvious that people can generalize the past
tense rule as well; what is the past tense of GLORP if not GLORPED?
The single-route, connectionist interpretation of such behaviour is that
novel forms are produced by the same mechanism as known forms,
namely, the net. Thus, a model might be trained on a variety of verbs,
resulting in changes to the weights that reflect facts about the past tense.
The same weights would then be used in generating a novel past tense
such as GLORPED, One of the important tests for future models of the
past tense will be to determine if they generalize in appropriate ways. I
myself doubt whether this will be a serious problem, assuming the
model is trained in a way that faithfully reflects facts about the distribu-
tion of regular and irregular past tenses in the language. The system is
overwhelmingly regular; and the weights will come to reflect this fact,
making it likely that the regular past tense will be attached to almost
any novel input. The only exceptions would be cases where the novel
input happens to fall within one of the clusters of irregular pasts, for ex-
ample, TING might be given the past tense TANG on the basis of neigh-
bours such as RING-RANG and SING-SANG. There is some evidence
that children produce such forms (Bybee and Moder 1983). I think it is
likely to be more of a challenge to get a model to correctly produce
irregular past tenses given the overwhelming degree of regularity in
the system.

Although the Seidenberg and McClelland (1989) model illustrates
how generalization occurs within a simple network, it also raises
questions as to whether such networks can achieve performance that is
as good as peoples'. The model was trained on monosyllabic words,
and correctly generalizes when presented with simple nonwords such
as NUST or RIKE. Glushko (1979) had observed that nonword naming
latencies also exhibit consistency effects; thus nonwords such as NUST,
from the entirely consistent -UST neighbourhood, are named more rap-
idly than are nonwords such as MAVE, from the inconsistent -AVE
neighbourhood. Although the standard view is that novel forms are
generated by applying the regular rules, these results suggest that gen-
eration involves a network that encodes similarity and consistency
relationships among pools of neighbours, as in the case of words. The
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Seidenberg and McClelland model also produces consistency effects for
simple nonwords. The model does not perform as well as people in
naming nonwords, however; it produces a larger percentage of errors
on more difficult items such as JINJE or KEAD (Besner et al. 1990). As
Seidenberg and McClelland (1990) noted, however, this behaviour of
the model is closely related to the fact that whereas peoples' vocabular-
ies are on the order of tens of thousands of words, the model was
trained on only 2897. Thus, the model does well on nonwords that re-
semble items in the training corpus (for example, NUST) but poorly on
unusual items such as JINJE. One way to view these results is that the
model performs about as well as one might expect of a person who only
knows 2900 monosyllabic words. Other aspects of the implementation,
particularly the phonological representation that was used, also limit
the model's performance on nonwords (see Seidenberg and McClelland
1990 for discussion). These observations suggest that the limitations
that have been observed may not be insuperable. Still, given the con-
cerns that have been raised regarding the capacities of simple backprop
nets to generalize (McCloskey and Cohen 1989), it will be important to
investigate this issue further - and considerable caution is in order. In
the case of the past tense of verbs, it will be important to determine
whether a network can both generate correct past tenses for known
verbs and generalize even in the case of odd nonwords such as XPLK;
even though XPLK has no close neighbours (or perhaps because of it?),
we can agree that its past tense must be XPLKED. As I have noted, I
think this is likely to be a tractable problem given the extreme regularity
of the system but, this is a critical empirical question that must be
addressed.

Conclusion

One of the most important contributions of the Pinker and Prince (1988)
paper is that it provided a description of a broad range of phenomena
that any adequate theory of the past tense must explain. I have suggest-
ed that it is by no means obvious that the phenomena they highlighted
lie outside the scope of simple connectionist models, the failures of the
McClelland and Rumelhart (1986) model notwithstanding.5 To their list
of phenomena should be added those that were uncovered in the Sei-
denberg and Bruck (1990) and Prasada et al. (1990) studies. These data
are strongly reminiscent of that which were observed earlier in connec-
tion with spelling-sound correspondences.

If I am correct in suggesting that phenomena such as the past tense
in English can be accommodated by a simple connectionist architec-
ture, this would suggest a somewhat different relationship between
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linguistic theory and connectionist modelling than that implied by
Pinker and Prince's 'implementational' view. The Seidenberg and Mc-
Clelland (1989) model does not merely 'implement' the dual-route
model of naming. Our analyses of the model indicate that it cannot be
decomposed into components corresponding to a set of rules and a list
of exceptions; thus, the two mechanisms of the dual-route model are not
directly implemented. Moreover, the model behaves in ways that
would not be predicted on the simple rules-and-exceptions view. The
ways in which frequency and consistency of spelling-sound correspon-
dences affect processing follow from an understanding of how learning
works in a simple network employing distributed representations, not
from the properties of the rule and lookup mechanisms proposed in
earlier theories. It is a strong argument in the model's favour that peo-
ple exhibit analogous behaviours. In the case of the past tense, there is
as yet no implemented model that addresses all (or even most) of the
relevant phenomena, but thinking about the generation of past tense
forms in connectionist terms has already led to predictions that have
been confirmed in behavioural studies. I suggest that these phenomena
would not have been discovered without an understanding of how
learning works in connectionist networks. To the extent that the connec-
tionist framework both accounts for various facts and generates
novel, correct predictions, it cannot be said to be simply 'implementing'
the rules.

Is it the case that phenomena of the sort I have described (for exam-
ple, consistency effects) are wholly incompatible with the rules-and-ex-
ceptions approach? Certainly not. One response to data of this sort
would be to modify the dual-route model in order to accommodate
them. That is what happened in the case of spelling-sound correspon-
dences, and it could as well occur with respect to verbs. Thus, Patterson
and Coltehart (1987) describe various modifications of the dual-route
model intended to cope with the Glushko consistency effects. Similarly,
Pinker (1991) has recently described a modified dual-route model in
which some forms are generated by means of an associative net, and
others are generated by rule. In response to the Seidenberg and Bruck
(1990) results, Pinker now suggests that the associative net applies to in-
consistent words, such as BAKE or MIND, previously thought to fall
within the purview of the rule-component. Whether or not this move
will be successful is unclear. It certainly introduces some important
questions as to how such a system would ever be learned. The child
would have to learn that BAKE-BAKED and TAKE-TOOK are pro-
cessed by one mechanism, even though they are superficially quite dif-
ferent, whereas BAKE-BAKED and LIKE-LIKED are processed by
separate mechanisms, even though they are superficially quite similar.
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Still, it is not inconceivable that such problems could be resolved. Cer-
tainly, in the absence of an implemented connectionist model of the past
tense that is at least descriptively adequate, Pinker's alternative is
equally viable.

Note, however, that this discussion involves a very different relation-
ship between connectionism and linguistic theory than Pinker and
Prince (1988) envisioned. Their idea was that connectionist models
could only 'implement' the types of knowledge structures and process-
ing mechanisms uncovered by linguistic theory. That would involve in-
vesting the connectionist network with properties independently
established within linguistic theory. What Pinker (1991) seems to have
in mind is the exact opposite: investing a rule-based system with prop-
erties independently discovered on the basis of connectionist model-
ling. If it turns out that rules apply to words from consistent neighbours
but not to words from inconsistent neighbourhoods, change the notion
of rule so that it obeys this principle. If it turns out that facility in pro-
ducing the past tense depends on how often a pattern occurs in the lan-
guage, assign frequencies to the rules. In general, there is sufficient
elasticity in the notion of 'rule' to permit a rule-based account to accom-
modate nearly any pattern of data. Unless there are constraints on the
properties of rules, there would not seem to be any limits to their range
of applicability.

What is important, of course, is not whether one theory can mimic an-
other but, rather, from where the correct generalizations are derived. In
this regard, the approach that I have advocated is profoundly different
from Pinker and Prince's. I began this paper by suggesting that connec-
tionist models can be properly understood with reference to the learn-
ability notion that has been central to studies of language acquisition.
The models I have been describing are systems that learn under certain
specifiable constraints. From this point of view, it is critical to under-
stand such things as the initial state of the system, the input to the sys-
tem, and the capacity of the system to learn. The generalizations that
govern performance derive from the interaction of these factors. It is be-
cause they are so critical to a model's performance that Pinker and
Prince's criticisms of the Rumelhart and McClelland (1986) model (for
example, of the training regime and the phonological representation)
were so telling. The central, defining feature of this approach is that it is
centred on the question of how a particular task is mastered (for
example, learning a language). In a much simpler fashion, our models
are also task-centred: they ask how a system can come to perform a task
such as pronouncing words or generating the past tense.

Pinker and Prince's approach starts with a characterization of the
knowledge of the adult - competence - and asks how this is achieved.
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Thus, they assume a theory of inflectional morphology that distinguish-
es between rules and exceptions. This theory is primarily derived from
distributional analyses of adult utterances rather than from the analysis
of a task. The rules and lists of exceptions are attempts to rationalize the
regularities implicit in this large set of observational data. As I have not-
ed, the view that knowledge consists of rules and lists of exceptions is
by no means universal among theoretical linguists. I would argue that
this view is plausible only if one considers relatively simple systems
such as inflectional morphology in English, and even in this simple do-
main there are phenomena suggesting that it is an oversimplification.
Nonetheless, when Pinker and Prince turn to considering the acquisi-
tion process, they assume that a proper theory will necessarily respect
the rule/list distinction. They are able to amass a large amount of data
that are consistent with the distinction and attempt to sketch learning
mechanisms that are compatible with it. Among the other approaches
afforded by theoretical linguistics, however, is learnability. Ideally, what
has to be independently motivated are the initial state of the system, the
way in which knowledge is represented (for example, in terms of
weights on connections), the input to the child, and the way in which
learning occurs. From the interaction of these factors a certain type of
competence necessarily follows. Thus, knowledge representations de-
velop in the service of mastering a task. This contrasts with theories in
which knowledge representations reflect generalizations derived from
comparisons across adult utterances or across languages.

According to Rumelhart et al. (1986), the rules and the list of excep-
tions can be taken as simply an imprecise, higher level characterization
of the behaviour of a complex system. Abstracting from the details of
the Seidenberg and McClelland model, for example, one could say that
it behaves as though it had induced the rules governing most words in
the language but also represented the exceptions and not be wholly in-
accurate. With the model in hand, however, one can see that it does not,
in fact, implement anything like the rules or the list of exceptions previ-
ously envisioned. In fact, its behaviour departs systematically from
what was expected on the rules-and-exceptions view. Thus, the fact that
the model's behaviour can be summarized in a certain way should not
blind us to how it actually works. And the virtue of having an imple-
mented simulation model is that one can actually see.

Of course, there are very few models that achieve any kind of descrip-
tive adequacy; even our model is severely limited in scope. It is absurd-
ly ambitious to attempt to develop systems that mimic human
behaviour in detail, and certainly very little has been achieved in this
regard so far. Moreover, the difficulty of this task - and the limitations
of scope that this Imposes - ensures that any given model will simply
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be false insofar as it fails to be faithful to all of the phenomena of inter-
est. These observations certainly justify Pinker and Prince's robust
skepticism and suggest that theories of the sort they described will con-
tinue to play an important role and, in many domains, will continue to
be the best accounts that can be achieved.

In my view, the great divide is not between linguistic theory and con-
nectionism; it is between theories that are centred on the learnability
question and those that treat it as secondary to characterizations of
adult competence. I myself do not believe that the non-learnability ap-
proaches that are common in many areas of theoretical linguistics (for
example, morphology) are powerful enough to converge on the correct
characterizations of linguistic knowledge. Learnability questions are of-
ten acknowledged but in some domains they do not play a central role
in theory development. I see connectionism as contributing in an
essential way to achieving explanatory theories of a sort to which many
linguists aspire.

Notes

1 I am quoting here from their description of a course they jointly offered at
the Summer Institute of the Linguistic Society of America (Santa Cruz 1991).

2 I am quoting here from the title of a talk, 'Rules and Associations,' given at
several locations. I heard it at a meeting convened by the McDonnell-Pew
Foundation in San Diego 1990.

3 I include here the 'principles and parameters' approach to acquisition, even
though it differs somewhat from the earlier learnability work.

4 Pinker and Prince (1989) appear to have sensed that the inconsistent items
would behave differently than would entirely regular words: 'In contrast [to
irregular verbs], regular verbs, unless they are similar to an irregular duster,
have no gradient of acceptability based on their phonology' (188; italics
added).

5 Though I would not want the 'simple models' to be limited to feedforward
nets trained using backprop.
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COMMENT

Connectionist Models in the
Information Processing Paradigm

Michael E. J. Masson

In developing these comments on Seidenberg's chapter I have estab-
lished three objectives. The first is to characterize the theoretical context
within which connectionist models are emerging in psychology and, in
particular, the information processing paradigm. The second objective
is to provide an evaluation of the Seidenberg and McClelland (1989)
model of word recognition within this context. The third objective is to
explore some interesting extensions and implications of the model.

The Theoretical Context of Connectionist Models

There is a firm tradition within the information processing paradigm
that places the emphasis of theoretical models on the notion of symbolic
representation and manipulation (e.g., Anderson 1983; Kintsch 1974;
Newell and Simon 1972). Two examples of this are shown in Table 4.1.

Table 4.1: Examples from Symbolic Representation Models

Production systems

IF the quantities v, vo, and t are known

THEN assert that the acceleration a is known

Text propositions

KNOW[LINGUISTS, SOLUTION]

The first is an example of a production, or a condition-action pair, from
a production system. When the conditions of the production are met,
the action is executed. The second example is based on a prepositional
representation of a text. In these representational schemes symbols that
stand for rich concepts, perceptual events, and ideas are directly
manipulated. Connectionist systems are founded upon a very different
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representational format. The format is based on highly interconnected
processing units with concepts depicted as ephemeral patterns of acti-
vation across an entire set of units rather than as individuated elements
or symbols. The lack of symbolic representation and manipulation in
connectionist models has created debate about how connectionist mod-
els should be viewed within the established framework.

It has been claimed, for example, that connectionist models simulate
events that occur at a level (e.g., physiological) that is different from that
inhabited by events simulated in symbolic models (Broadbent 1985;
Fodor and Pylyshyn 1988). The argument is that connectionist models
should be construed as theories about the way in which cognitive algo-
rithms are implemented, not as theories of the very character of those
algorithms. The counter claim is that connectionist models actually do
serve as models of mechanisms of thought (as models of the real cogni-
tive algorithms), not just as implementations at a physiological level
(McClelland and Rumelhart 1986; Rumelhart and McClelland 1986,
1985). Moreover, a means of testing this proposition has been put for-
ward in the form of the claim that connectionist models are able to ac-
complish three important tasks (McClelland 1988). First, they provide
new classes of explanations for basic findings. Second, the interaction
between groups of processing units produces emergent properties of
behaviour (e.g., schemas, prototypes, and rules) without any need to di-
rectly code those properties into the model. Third, connectionist models
are capable of stimulating new research into cognitive phenomena.
These are important criteria to adopt when evaluating the contribution
of specific connectionist models.

Another issue within the information processing context concerns the
standards that modelling schemes should live up to. Some classes of in-
formation processing models include a set of free parameters that may
be adjusted to provide the best possible quantitative fit to data from spe-
cific experiments. For example, in the Kintsch and van Dijk (1978) mod-
el of text comprehension, one free parameter was the number of
propositions maintained in short-term memory during sentence pro-
cessing. By a quantitative fit, I mean that the model should provide pre-
dictions in the same dependent variables that are expressed in human
behaviour. For example, the model should provide information about
response times in milliseconds, error rates, and so on. The benefit of de-
termining the number of free parameters in a model and measuring the
accuracy of its quantitative fit is that it enables one to distinguish be-
tween correct and incorrect models or, at least, between models that are
doing relatively good or poor jobs of accounting for data. In many cases
different models can make roughly the same predictions, but the
winner is the one that has the closest quantitative fit, according to
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measures such as root mean squared error based on the deviation be-
tween model predictions and observed behaviour. The testing of alter-
native models is a very important part of this set of standards.

Connectionist modelling appears to operate in a very different way,
as is shown in the next section, and this has drawn strong criticism from
some quarters (e.g., Massaro 1988). On the other hand, Estes (1988) has
proposed a different strategy for addressing the testability of connec-
tionist systems. The goal is to establish theoretically motivated con-
straints on the general architecture of a model and to adhere to those
constraints as particular instantiations of that architecture are applied
to specific domains. When testing implementations against sets of em-
pirical data, it is possible to determine whether the constraints dictated
by the general architecture contribute to the model's success or produce
serious failures. At the same time, the domain-specific versions of the
model are put to the test as well. This approach to evaluating connec-
tionist models ensures sustained interaction with cognitive research
and, arguably, constitutes a valuable heuristic for exploring this new
enterprise. In Table 4.2 I have summarized some of the criteria for eval-
uating connectionist models within the information processing
framework.

Table 4.2; Some Criteria for Evaluating Connectionist Models

(1) Provide new classes of explanations for basic findings
(2) Interaction among processing units has implications for

cognitive operations
(3) Stimulate new research
(4) Provide good qualitative and quantitative fits to data, rela-

tive to alternative models
(5) Adhere to constraints imposed by a general architecture

The Seidenberg and McClelland Model

General criteria

To frame the Seidenberg and McClelland (1989) model within the con-
text of the evaluative criteria reviewed above, consider first the overall
architecture of the model. This architecture can be used to guide our
understanding of how important aspects of reading go forward. For ex-
ample, the architecture provides a way to understand the role
phonological recoding plays during reading. Currently, there is a con-
troversy in the literature regarding whether it is necessary for one to
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phonologically recode a visually presented word in order to gain access
to its meaning (McCusker, Hillinger, and Bias 1981; Van Orden,
Johnston, and Hale 1988). It is quite clear from the Seidenberg and Mc-
Clelland architecture how that issue should be resolved. According to
the model, access to meaning can follow two parallel routes. One route
goes from the orthographic code to the meaning module without ac-
cessing phonology at all. The other route involves passing through the
phonological module on the way to the meaning module and, in most
instances, would be expected to take longer. In this sense the computa-
tion of the phonological representation during reading often does not
directly contribute to identifying a word. On the other hand, the com-
putation might be very useful when reading complicated text. Having
a phonological code available for manipulation in working memory
could be very important,

In their initial implementation of this architecture Seidenberg and
McClelland have chosen to focus on the orthographic and phonological
modules and their role in the identification of isolated words. With just
these two modules the model provides a new and provocative account
for important aspects of human behaviour. For example, the variables
of word frequency and orthographic regularity interact when word
naming time is measured. Specifically, orthographically regular words
are named in less time than are exception words, but this effect is weak
or absent when high frequency words are involved (Seidenberg, Wa-
ters, Barnes, and Tanenhaus 1984). The classic, dual-route account of
this finding is that pronunciation can be achieved through the earlier
finishing of two parallel processes: (a) assembly of a phonological code
using spelling-sound correspondence rules and (b) activation of a
word's lexical entry and looking up the pronunciation stored in associ-
ation with that entry (e.g., Paap, McDonald, Schvaneveldt, and Noel
1987; Patterson and Coltheart 1987).

The account of the frequency by regularity interaction proposed by
Seidenberg and McClelland is driven by the consequences of the dis-
tributed representation used in their model. This approach rejects the
notion that each concept is represented as a single entry in a lexicon. In
connectionist systems the code for a concept typically lies in the connec-
tions between an entire collection of processing units. There is no spe-
cial representation for well known words. Orthographic and
phonological knowledge about words is represented in the same
scheme that we use to pronounce letter strings that we have never
before encountered. The frequency by regularity interaction is an emer-
gent property of the model's distributed scheme for representing
orthographic and phonological knowledge. This approach is a signifi-
cant departure from the way that knowledge of words has been
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characterized in the past. Moreover, the Seidenberg and McClelland ex-
planation of the frequency by regularity interaction, word naming, and
lexical decision tasks in general works without recourse to the meaning
module. This is a striking accomplishment in light of the fact that word
identification tasks, such as word naming and lexical decision, have
been used extensively in psychological research because of the assump-
tion that they tap aspects of access to the meaning of words.

The Seidenberg and McClelland model's simulation of the ortho-
graphic regularity effect provides an interesting example of an emer-
gent property of its processing units. The model does not encode rules
of pronunciation in any explicit way, but it does produce a regularity ef-
fect that could be construed as rule based. Although this result should
be scored as a success, there is a problem. If asked, people can articulate
some of their knowledge about rules of pronunciation and explain their
application. It is unclear how a connectionist system can account for
that kind of behaviour. Do we suggest that it is an epiphenomenon that
comes about as a result of the regularity that is learned by the connec-
tionist system? Or are these rules not applied during the actual produc-
tion of a pronunciation? These important questions remain unanswered
and are not addressed by the Seidenberg and McClelland model.

Another evaluative issue concerns the testability of a model and its
comparative success at fitting observed data. One aspect of testability
that highlights the contrast between the connectionist approach and the
approach to modelling in the information processing tradition is that of
free parameters. Seidenberg and McClelland (1989) claim that their
model has seven free parameters that could be explicitly adjusted in an
effort to improve fits to data. But this claim depends on the definition
of free parameters. For instance, Massaro (1988) has argued that in a
connectionist system one has as many free parameters as there are con-
nections between nodes. The freedom of connection weights to take on
any value within certain ranges as a result of training qualifies them as
free parameters. In this view, the Seidenberg and McClelland model is
charged with having not seven, but over 250,000 free parameters. Al-
though I know of no resolution to the issue of counting free parameters,
connectionist models are testable in the sense that they can be com-
pared against other models with respect to the accuracy of their predic-
tions. The falsifiability of connectionist models is demonstrated by the
fact that they do not always come out on top in such comparisons (e.g.,
Massaro 1989).

Contrasts between the predictive success of models can be sharpened
by requiring models to make quantitative predictions. Although
Seidenberg and McClelland occasionally refer to their model's predic-
tions as quantitative, within the context of classical psychological
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modelling the predictions they describe are actually classified as quali-
tative. For example, their simulation of reaction time data is expressed
in terms of error scores. There is no mechanism in the model to translate
error scores into reaction time values, so the model is unable to provide
quantitative fits. On the other hand, the model is able to make accurate
qualitative predictions that capture important aspects of behavioural
data. For current purposes dependence on qualitative predictions may
be adequate, but it places limits on the degree to which we can
make comparisons between models in terms of how well they fit
observed data.

Specific criticisms

Although the Seidenberg and McClelland model measures up rather
well against the general evaluative criteria for connectionist models, it
has been criticized on a number of specific issues, two of which will be
raised here. The first involves the model's performance on non-words.
Besner, Twilley, McCann, and Seergobin (1990) have pointed out that
the Seidenberg and McClelland model has difficulty in producing cor-
rect pronunciations for certain non-words. In these instances, when giv-
en a non-word pattern the phonological code produced by the model is
better fit by a pronunciation that is different from the pronunciation
that a human would generate. Besner et al. claim that this difficulty re-
flects a fundamental problem with the architecture of the model; specif-
ically, the lack of explicitly instantiated pronunciation rules. They point
to the difficulty inherent in any attempt to capture both generalizability
and specific instances in a single representational scheme.

Alternatively, it could be the case that there is not a problem with the
model's architecture, but, rather, that there is a constraint on how real-
istic a computer simulation can be. The model's behaviour is based on
learning a corpus of 3,000 words, whereas human subjects' pronuncia-
tions are based on a corpus of tens of thousands of words. The model's
behaviour might be very different if trained on different numbers of
words. Training with a larger corpus, for example, should produce a
stronger generalization to non-words. Seidenberg and McClelland's
claim that generalizable, rule governed behaviour can be captured in
the same scheme as that which encodes information about frequently
occurring words depends on the model's ability to produce correct pro-
nunciations of novel letter strings. Failure of the model to produce
reasonable performance on non-words would raise serious doubts
about some of its basic architectural features.

A second criticism concerns the claim that the Seidenberg and
McClelland model is capable of simulating performance in a word
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naming task without access to a lexical representation that is specific to
the target word. This claim is in direct opposition to the dual-route
views that assume pronunciation may either be built using orthograph-
ic-phonological correspondence rules or by accessing an item's entry in
the lexicon (e.g., Paap et al. 1987; Patterson and Coltheart 1987). Accord-
ing to dual-route theories low frequency exception words (e.g., deaf)
take longer to pronounce, because the results of assembling a pronun-
ciation and the output of lexical access yield conflicting candidate pro-
nunciations. In the Seidenberg and McClelland model the long
response latency is simulated by an elevated phonological error score.
Because of the word's low frequency of occurrence the system has not
adequately adjusted the pattern of connection weights to allow the cor-
rect pronunciation to override the influence on the weights from many
orthographically similar words (e.g., dear, leaf, sheaf).

In an attempt to demonstrate the validity of the dual-route model,
Paap and Noel (1989) tested subjects under conditions of high and low
memory load. The rationale was that assembly of a pronunciation
would demand more attentional resources, and that, when under high
memory load, this route would be inhibited. This reasoning produced
the counterintuitive prediction, confirmed by the Paap and Noel exper-
iments, that the advantage for regular over exception words would de-
crease under conditions of high memory load. In particular, the time
taken to name low frequency exception words was reduced under high
relative to low memory load conditions. It is clear that the implemented
version of the Seidenberg and McClelland model cannot replicate this
pattern of data.

It is conceivable, however, that another version of the model, one in-
corporating the proposed meaning module, would be able to reproduce
the result. One could assume that the memory load requirement, either
high or low, induced a strategy whereby subjects pursued the ortho-
graphic-meaning-phonological route proposed in the general architec-
ture of the Seidenberg and McClelland model. For example, subjects
may have taken extra time to encode the meaning of the word so they
could cope with the demands of two simultaneous tasks. In keeping
with this possibility, response latencies in the Paap and Noel data were
as much as fifty per cent higher than is typically found in pronunciation
studies. By following the route through the meaning module subjects
could avoid the source of the exception effect, that is, the orthographic-
phonological route. This account closely resembles the original dual-
route explanation, but there are two important differences. First, in the
Seidenberg and McClelland model the orthographic-phonological
route typically dominates the pronunciation task. Dual task conditions
were necessary in order to increase the role played by the meaning
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module. Second, no look-up of stored pronunciations (as opposed to as-
sembly) is involved in the Seidenberg and McClelland model when the
meaning module is invoked. The meaning module influences activa-
tion in the phonological nodes through the same computational func-
tion as do the orthographic nodes. The difficulty with this account is
that the meaning module has not yet been implemented. Until that is
accomplished critical tests of the model's architecture will not be
possible.

Extensions of the Mode!

Dyslexia

A very important extension of the model, described in some detail in
the Seidenberg chapter, has to do with dyslexia. Exploring a topic such
as this in the context of a connectionist model provides the potential for
some very important advancement, especially regarding sources of def-
icits. Seidenberg has suggested that dyslexia may be simulated by re-
ducing the number of hidden units, and the resulting behaviour of the
model is strikingly similar to observed word recognition deficits among
dyslexics. There are, of course, other possible means of simulating dys-
function in connectionist models, such as altering the learning algo-
rithm (as Seidenberg suggested).

Another possibility that deserves attention is the potential for prob-
lems with computations that are performed within the units them-
selves. For example, a computation must be performed on the
activation that comes into a unit, and the result of that computation is
then transmitted to other units. In the Seidenberg and McClelland mod-
el, part of that computation involves application of a squashing function
that takes the incoming activation from neighbouring units, which can
be a very large number, and reduces it to a value ranging between +1
and -1. This prevents the output of any single unit from reaching ex-
tremely large values that can exert an unduly strong influence on the
system's behaviour. It might be that this mechanism is implicated in
dyslexia.

Although I am not familiar with connectionist simulations that ex-
plore disabled computational functions as a means of simulating dys-
function, there is an analog to this concept in a different kind of
distributed memory system. Metcalfe Eich (1982) has developed a
model that uses a distributed representational scheme based on a large
list of features, each of which can take on a real value. The knowledge
about all the concepts the system knows is embedded across an entire
vector of nodes or features. As the system acquires new knowledge,
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variability in the values of the features begin to increase. For instance,
some features have large positive values, others are near zero, and so
on. As new concepts are added there is a growth in variability of feature
values, particularly with the addition of similar concepts, because their
patterns of feature values are similar. Those nodes representing features
with large positive values in many of the concepts will take on very
large positive weights, those near zero will remain there, and so on. This
situation leads to great difficulty in recovering memory for any one of
the concepts that has been embedded in the system.

Metcalfe's (1990) approach to handling the problem is to normalize
the vector, keeping values from going beyond some limit. This is anal-
ogous to the task performed by the squashing function in connectionisl
systems. Metcalfe has simulated problems that are observed in various
amnesic syndromes by disabling the normalization routine. For exam-
ple, she produced some very interesting effects simulating Korsakoff
amnesia, in which there is failure to release from proactive interference.
Given the suggested analogy between Metcalfe's normalization routine
and the squashing function in connectionist systems, manipulation of
the squashing function may be another fruitful means of exploring hu-
man dysfunction.

A final point on the topic of dyslexia concerns the potential for reme-
diation. It is possible, for instance, to consider how the Seidenberg and
McClelland model might be used to test ideas concerning remedial
training programs. The model might be trained on different word cor-
pora in an effort to produce improvement in specific aspects of word
recognition performance. Corpora that yield promising results with the
model might then be used in remedial programs with appropriately se-
lected dyslexic readers.

Spelling

A natural extension of the Seidenberg and McClelland model is to the
task of spelling. One might characterize the task of spelling a word as
running the Seidenberg and McClelland model in reverse, going from a
phonological pattern to an orthographic pattern. There are striking par-
allels, both in the empirical results and in the theoretical explanations,
that have emerged from work on spelling and word identification tasks.
With respect to behavioural data, in word naming there is an interaction
between word frequency and orthographic regularity, such that
regularity matters only for low frequency words. In spelling there is a
similar effect regarding high and low frequency words that conform to
or violate a regular spelling rule. There are more spelling errors for
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words that violate the rule, but the effect is found almost exclusively
with low frequency words.

Interestingly, in the context of work on spelling, this interaction has
led to a dual-route explanation in which one route is based on pho-
neme-to-grapheme correspondence rules, and the other depends on
word-specific memory (Kreiner and Gough 1990). Knowledge about
the specific words allows us to handle rule violators. The Kreiner and
Gough proposal is a parallel to the dual-route models that have influ-
enced the word identification literature, so it appears we have a familiar
dragon for the Seidenberg and McClelland model to slay. The simula-
tion of spelling behaviour, therefore, is an important extension for the
Seidenberg and McClelland model.

Meaning

A crucial, but as yet unimplemented, part of the Seidenberg and Mc-
Clelland architecture is the meaning module. Earlier I suggested a way
in which that module might be used to simulate some results that are
troublesome for the model. It will be essential to incorporate this mod-
ule into an implemented version of the model if Seidenberg and Mc-
Clelland hope to simulate a significant range of reading tasks and to
conduct critical tests of the model. In addition to the empirical work al-
ready discussed, we can consider research involving the identification
of words presented in a meaningful context. The model as it is currently
instantiated would not be capable of reproducing the effects of context
on word identification, because the meaning module has not been
implemented.

Other connectionist models, however, have proven successful in their
attempts to simulate context effects. I have been working on a Hopfield
network model, for example, that is somewhat different from the archi-
tecture of the Seidenberg and McClelland model in that it does not have
hidden units (Masson 1989, 1991). Sharkey (1989) has been indepen-
dently using a similar model. The emphasis in these models is on a dis-
tributed memory representation. One of the most striking results of this
simulation work is that certain behavioural results, which standard se-
mantic network models (e.g., Collins and Loftus 1975) have failed to ex-
plain, fall naturally out of these models. For example, consider a task in
which a target word is preceded by a semantically related prime word,
and the delay between the onset of the prime and target is varied. It has
been shown that facilitation produced by strong and by weak semantic
associates of a target word have the same onset and reach asymptote at
the same time (Lorch 1982; Ratcliff and McKoon 1981). Whereas
semantic network models predict that strong associates should have an
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earlier onset and should reach asymptote sooner, the Hopfield network
model accurately simulates the observed result (Masson 1991). These
are very encouraging results, and they may be representative of effects
that could come out of the Seidenberg and McClelland model by imple-
menting the meaning module that is part of the proposed architecture.

Episodic effects

The final extension I would like to consider is the issue of the represen-
tation of episodic events. An important example is the finding that an
episode consisting of a single presentation of a well-known word, even
after one has mastered a vocabulary, can have a persistent beneficial ef-
fect on the fluency with which one can identify the word on a later oc-
casion (Jacoby 1983; Jacoby and Dallas 1981). This result has proven to
be a very difficult problem for certain classes of models, especially se-
mantic memory models that propose that word identification consists
of the activation of an appropriate entry in a stable lexicon (Forster 1976;
Morton 1969). In these models each word is represented as a single
node, and its identification depends on accessing and activating its en-
try. The problem is; if these representations are stable, how could a sin-
gle presentation have such a powerful impact?

Episodic effects may pose a problem for some connectionist models
as well (but see Rueckl 1990). Seidenberg and McClelland (1989)
touched on this issue and provided a simulation of episodic effects, in
which they presented a single word to their system after it had been ful-
ly trained on their corpus of monosyllabic words. The presentation of
the word produced a reliable reduction in the model's error score on
that word, but the problem is that in order to produce that effect Seiden-
berg and McClelland presented the item to the model ten times in suc-
cession. They may have tried other techniques that were not reported,
but a single presentation of the item probably would not yield a notice-
able effect. This shortcoming suggests that a change in the model is re-
quired that goes beyond the currently implemented architecture.

One possibility is that persistent episodic effects could be a result of
constructing an interpretation of a stimulus (e.g., processing meaning in
the case of word targets). Some of the work I have been doing on this
phenomenon in the context of the word naming task involves
pseudohomophones (Masson and Freedman 1990). A pseudohomo-
phone is a letter string that does not spell a word but that sounds like a
valid word when pronounced (e.g., kruze). In these studies subjects
were initially asked to name a series of words and pseudohomophones
mixed together. Later in the experiment subjects were presented
with the real word that corresponded to a previously read
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pseudohomophone (e.g., cruise), and It was found that their pronuncia-
tion latency for that word was significantly reduced, virtually by the
same amount as was found when the correct word was shown on both
occasions. This result implies that we have to consider something be-
yond the orthographic-phonological connections when trying to ac-
count for episodic phenomena.

Conclusion

The connectionist model proposed by Seidenberg and McClelland
(1989) and discussed by Seidenberg (this volume) represents a well ar-
ticulated theory of word identification. Its implementation has pro-
duced successful simulations of a wide range of important behavioural
data and, at the same time, permitted close scrutiny and comparison
with other models (e.g., Besner et al. 1990). It is noteworthy that the
model is capable of simulating various word identification paradigms
without implementing a meaning module, and that there is no special
representation for words that the model 'knows.' These facts have
placed the model in strong contrast with a number of other models of
word identification and set the stage for some interesting and useful de-
bate. Moreover, the implementation of the Seidenberg and McClelland
model is guided by an architecture that holds the promise for the devel-
opment of even more compelling versions of the model.

Despite this promising start, Seidenberg and McClelland have left
some high-priced promisory notes regarding the model's fundamental
architectural assumptions. It remains to be seen, for example, whether
the model's commitment to a representation with no special provision
for known words can withstand continued empirical test. It is also un-
clear whether the model will be able to provide adequate quantitative
fits of data from a variety of word identification tasks, such as lexical
decision. Quantitative predictions may soon be necessary if the model
is to be directly compared with other classes of competing models. The
implementation of the meaning module will be a crucial next step in the
model's evolution, and at this stage it is very difficult to predict how
that will alter the model's behaviour. Without the meaning module,
however, I suspect the model's utility will be severely limited. At least
some of the arcane laboratory tasks that have been devised to study
word identification processes call upon an observer to construct a
meaningful interpretation of a printed pattern. When the ultimate chal-
lenge of exploring word identification as part of the task of reading for
comprehension is accepted, we may see a major shift of emphasis in the
model's development.
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Grammatical Structure and
Distributed Representations

Jeffrey L. Elman

Introduction.

Neural networks have a number of properties which make them attrac-
tive computational systems for modelling cognitive behaviour (McClel-
land, Rumelhart, and Hinton 1986; Rumelhart and McClelland 1986).
One of the useful characteristics is their sensitivity to contextual factors,
and another is their ability to seek a solution which satisfies multiple
constraints.

For example, work by Kawamoto and McClelland (1986) and by St.
John and McClelland (in press) has shown how grammatical cues can
be combined with context information to make inferences about events.
Elman (1990) demonstrated that sequential context can provide the ba-
sis for adducing the category structure of internal representations of
lexical items. Mikkulainen and Dyer (in press) showed how a similar ef-
fect could be achieved for external representations (i.e., forms which
could then be used by other processing modules).

In these studies, distributed representations (Hinton 1988; Hinton,
McClelland, and Rumelhart 1986; van Gelder, in press) play a key role.
Distributed representations provide a high-dimensional, continuously
valued space which can support finely graded, multidimensional dis-
tinctions. This is clearly useful for language. However, there are other
requirements for language processing, and it is not self-evident that dis-
tributed representations can meet these requirements.

Consider the problem of how to represent complex grammatical
structure and, in particular, hierarchical constituent structure. In Elman
(1990), for instance, a network developed an internal representation for
the lexical item 'rock,' which captured the fact that this item (as used in
the language environment to which the network was exposed) was a
noun, inanimate, and of the class of things which may be used to break
other things. This representation was induced solely from the behav-
iour of this word across many contexts; the input form itself was a basis
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vector (i.e., a vector with a single randomly assigned bit turned on and
orthogonal to all other vectors used to represent lexical items).

Although this is a useful result, other issues arise as we consider what
sort of lexical representations might be required in sentences such as the
following.

(la) The boy threw the rock.
(1b) The boy broke the window with the rock.
(1c) The rock broke the window.
(1d) The boy who threw the rock later had to fix the window.

In a simple sense, the word 'rock' has, in all of these sentences, the
same meaning. One would, therefore, want a model to reflect this by
having representations which are more or less the same across the four
sentences. At the same time, the usage of the word differs across con-
texts. In (la) 'rock' is the direct object (patient, or theme). In (1b) 'rock'
is used as the instrument of an action. In (1c) the word is still the instru-
ment but also functions as the grammatical subject. Finally, 'rock' is
used in (1d) in a context which is very similar to that in (la); however,
(1d) is a complex sentence and the representation of rock qua object
must include the fact that this role occurs in the subordinate clause (in
order to distinguish it from the object role in the main clause). Thus,
while there is some aspect to the meaning of the word 'rock' which is
fixed, across usage, the way in which the word is construed is also de-
pendent on its context.

One way of dealing with such phenomena would be to posit sharp
distinctions between the various types of information which might be
relevant to sentence interpretation and to assign information to differ-
ent levels of representation. Thus, one might posit levels for phonolog-
ical, morphological, lexical, syntactic, semantic, discourse, and
pragmatic information (and possibly others).

Although this approach, which emphasizes the autonomy of levels,
has enjoyed great popularity in the generative linguistic tradition, it is
not without its shortcomings (cf. Langacker 1987, Chapter 1). At the
very least, this approach leaves unanswered the question of how - lack-
ing a shared vocabulary - information is to be exchanged between dif-
ferent levels. The problem is non-trivial. Furthermore, although many
phenomena can be described superficially in purely syntactic or lexical
(or semantic, morphological, phonological, etc.) terms, such encapsula-
tion often requires glossing over important details or ignoring trouble-
some exceptions. For instance, morphology is usually defined as the
level of representation at which minimal sound / meaning correspon-
dences are encoded. There are, however, sound/meaning relationships
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( 'sound symbolism') which are neither fully productive nor easily de-
scribed and which occur at what might seem to be sub-morphological
levels. And although one might think that the existence of a lexical level
should not be controversial (certainly all languages have words?), in re-
ality it turns out to be difficult, and perhaps impossible, to define the
concept word in any way which is consistent within a language (let
alone across languages). The distinction between words, compounds,
and phrases (e.g., 'tooth/ 'teeth-mark/ 'man-in-the-street'), can be very
tenuous.

Nonetheless, although there may be controversy regarding the ap-
propriate way of representing the context-dependent role of the word
'rock' in the above sentences, it is clear that the representations in the
different contexts must somehow be different. The representations
must reflect facts about rocks in general as well as their usage in the spe-
cific contexts. These usage distinctions include the various roles filled
by the rock and also the part of the sentence of which 'rock' is a constit-
uent (e.g., the difference between 'rock' in (la) and (1d)). This latter is-
sue has been raised forcefully by Fodor and Pylyshyn (1988). They
argued that the ability to represent compositional relations is funda-
mental to a theory of cognition, but they also claimed that such repre-
sentations can only be supported by the so-called classical theories
(more precisely, the language of thought, Fodor 1976).

I take Fodor and Pylyshyn's first claim (regarding the importance of
compositionality) as relatively uncontroversial. What is less clear is that
compositional relationships can only be achieved by the so-called clas-
sical theories or by connectionist models which implement those theo-
ries. Fodor and Pylyshyn present a regrettably simplistic picture of
current linguistic theory. What they call the classical theory actually en-
compasses a heterogeneous set of theories, not all of which are obvious-
ly compatible with the language of thought. Furthermore, there have, in
recent years, been well-articulated linguistic theories in which compo-
sition figures prominently but which do not share the basic premises of
the language of thought (e.g., Chafe 1970; Fauconnier 1985; Fillmore
1982; Givon 1984; Hopper and Thompson 1980; Kuno 1987; Lakoff 1987;
Langacker 1987). Thus the two alternatives presented by Fodor and
Pylyshyn, that connectionism must either implement the language of
thought or fail as a cognitive model, are unnecessarily bleak and do not
exhaust the range of possibilities.

In what follows, I ask whether connectionist models can in fact en-
code compositional relationships between linguistic elements. The in-
vestigation proceeds in two parts. First, the question is raised indirectly
by seeing whether it is possible to produce in a network behaviours
which may plausibly be thought to require representations that reflect
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compositional relationships.1 This is similar to the strategy employed
by linguists, who infer abstract mental representations based on observ-
able behaviour. The second approach is more direct. Because networks
are artificial systems, one can inspect them directly and examine the
mechanisms being used to produce the behaviour. Having done this,
we may then be in a position to raise the more interesting question,
which is how such representations differ (or are similar to) the available
alternatives.

Although I cannot at present give a definitive answer to this question,
I will suggest some ways in which connectionist representations (at
least, of the sort described here) differ from the so-called classical repre-
sentations. Two characteristics in particular stand out. First, the connec-
tionist representation of composition seems to be inherently more
efficient at encoding contextual dependencies and at handling interac-
tions among constituents (what Langacker 1987 calls accommodation)
than are classical alternatives. Secondly, the connectionist state repre-
sentation of hierarchical relations involves what might be called 'leaky
recursion.' This differs from the 'true recursion' afforded by stack ma-
chines. Leaky recursion allows information to spread more easily be-
tween levels of organization; this makes it unnecessary to assume
movement of constituents, traces, etc. It also raises the possibility that
when information-co-ordination (i.e., long-distance dependencies) is
blocked in certain situations, it is, for processing reasons, very different
than in a stack machine, which relies on percolation and subjacency
constraints. These issues will be explored in the Discussion section.

I should emphasize that the work described below, whatever its mer-
its, should not to be taken as a theory of language. A theory of language
will require certain properties of a processing mechanism which imple-
ments it, and I wish to know whether or not connectionist models are
viable candidates. The current work thus should be seen as an explora-
tion in the representational characteristics of a class of connectionist
models in order to determine their relevancy for language. But for var-
ious reasons (in part having to do with the artificiality of the task they
are taught), the models here do not provide a complete account of nat-
ural language use.

The remainder of this paper is organized in two sections, the first of
which reports empirical results. After reviewing a related simulation
from Elman (1990), I describe a task in which a network has to construct
abstract representations which encode grammatical relations, including
embedding relations. The trained network is studied in terms of perfor-
mance. Then the internal representations are analysed in order to un-
derstand how the network has solved the task. These results are
discussed at greater length in the second section and are related to the
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broader question of the usefulness of the connectionist framework for
modelling cognitive phenomena. Finally, I compare a connectionist
model with classical representations.

Simulations

Language is structured in a number of ways. One important kind of
structure has to do with the structure of the categories of language ele-
ments (e.g., words). The first simulation addressed the question of
whether a connectionist model can induce the lexical category structure
underlying a set of stimuli. A second way in which language is struc-
tured has to do with the possible ways in which strings can be com-
bined (e.g., the grammatical structure). The second simulation
addresses that issue.

Lexical category structure

Words may be categorized with respect to many factors. These include
traditional notions such as noun, verb, etc., the argument structure they
are associated with, and their semantic features. One of the consequenc-
es of lexical category structure is word order. Not all classes of words
may appear in any position. Furthermore, certain classes of words, e.g.,
transitive verbs, tend to co-occur with other words. (As we shall see in
the next simulation, these co-occurrence facts can be quite complex.)

The goal of the first simulation was to see if a network could learn the
lexical category structure which was implicit in a language corpus. The
overt form of the language items was arbitrary in the sense that the
form of the lexical items contained no information about their lexical
category. However, the behaviour of the lexical items - defined in terms
of co-occurrence restrictions - reflected their membership in implicit
classes and subclasses. The question was whether or not the network
could induce these classes.
Network architecture. Time is an important element in language, and
so the question of how to represent serially ordered inputs is crucial.
Various proposal have been advanced (for reviews, see Elman in press;
Mozer 1988). The approach taken here involves treating the network as
a simple dynamical system in which previous states are made available
as an additional input (Jordan 1986). In Jordan's work the prior state
was derived from the output units on the previous time cycle. In the
work here, the prior state comes from the hidden unit patterns on the
previous cycle. Because the hidden units are not taught to assume
specific values in the course of learning a task, they can develop
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Figure 5.1: Network used in first simulation. Hidden unit activations are copied along
fixed weights (of 1.0) into linear context units on a one-to-one basis; on the next time
step the context units feed into hidden units on a distributed basis.

representations which encode the temporal structure of that task. In
other words, the hidden units learn to become a kind of memory which
is very task-specific.

The type of network used in the first simulation is shown in Figure
5.1. This network is basically a three-layer network with the customary
feed-forward connections from input units to hidden units and from
hidden units to output units. There are an additional set of units, called
context units, which provide for limited recurrence (and so this may be
called a simple recurrent network). These context units are activated
on a one-for-one basis by the hidden units, with a fixed weight of 1.0.

The result is that at each time cycle the hidden unit activations are
copied into the context units; on the next time cycle, the contexts com-
bine with the new input to activate the hidden units. The hidden units
therefore take on the job of mapping new inputs and prior states to the
output; and because they themselves constitute the prior state, they
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must develop representations which facilitate the input/output
mapping.

The result is that at each time cycle the hidden unit activations are
copied into the context units; on the next time cycle, the context com-
bines with the new input to activate the hidden units. The hidden units
therefore take on the job of mapping new inputs and prior states to the
output. Because they themselves constitute the prior state, they must
develop representations which facilitate this input/output mapping.
The simple recurrent network has been studied in a number of tasks (El-
man, in press; Hare, Corina, and Cottrell 1988; Servan-Schreiber, Cleer-
emans, and McClelland 1988). In this first simulation, there were thirty-
one input units, one hundred and fifty hidden and context units, and
thirty-one output units.
Stimuli and task. A lexicon of twenty-nine nouns and verbs was cho-
sen. Words were represented as thirty-one bit binary vectors (two extra
bits were reserved for another purpose). Each word was randomly as-
signed a unique vector in which only one bit was turned on. A sentence
generating program was then used to create a corpus of 10,000 two- and
three-word sentences. The sentences reflected certain properties of the
words. For example, only animate nouns occurred as the subject of the
verb eat, and this verb was only followed by edible substances. Finally,
the words in successive sentences were concatenated so that a stream of
27,354 vectors was created. This formed the input set.

The task was simply for the network to take successive words from
the input stream and to predict the subsequent word (by producing it
on the output layer). After each word was input, the output was com-
pared with the actual next word, and the back-propagation of error
learning algorithm (Rumelhart, Hinton, and Williams 1986) was used to
adjust the network weights. Words were presented in order, with no
breaks between sentences. The network was trained on six passes
through the corpus.

The prediction task was chosen for several reasons. First, it makes
minimal assumptions about special knowledge required for training.
The teacher function is simple and the information provided is avail-
able in the world at any moment. Thus, there are no a priori theoretical
commitments which might bias the outcome. Second, although the task
is simple and should not be taken as a model of comprehension, it does
seem to be the case that much of what listeners do involves anticipation
of future input (Grosjean 1980; Marslen Wilson and Tyler 1980; Salasoo
and Pisoni 1985).
Results. Because the sequence is non-deterministic, short of memoriz-
ing the sequence, the network cannot succeed in exact predictions. That
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is, the underlying grammar and lexical category structure provides a set
of constraints on the form of sentences, but the sentences themselves in-
volve a high degree of optionality. Thus, measuring the performance of
the network in this simulation is not straightforward. Root mean
squared (rms) error at the conclusion of training had dropped to 0.88,
but this result is not particularly positive in and of itself. In simulations
where output vectors are sparse, as were those used in this simulation
(only one bit out of thirty-one output bits is turned on for any particular
pattern), the network quickly learns to reduce error dramatically by
turning all the output units off. This drops error from the initial random
value of -15.5 to 1.0, which is close to the final rms error value of 0.88.

Although the prediction task is non-deterministic, it is also true that
word order is not random or unconstrained. For any given sequence of
words there are a limited number of possible successors. Under these
circumstances, it would seem more appropriate to ask whether or not
the network has learned what the class of valid successors is at each
point in time. We therefore might expect that the network should learn
to activate the output nodes to some value proportional to the probabil-
ity of occurrence of each word in that context.

Therefore, rather than evaluating final network performance using
the rrns error calculated by comparing the network's output with the ac-
tual next word, we can compare the output with the probability of oc-
currence of possible successors. These values can be derived
empirically from the training data base (for details see Elman 1989);
such calculation yields a 'likelihood output vector' which is appropri-
ate for each input and which reflects the context-dependent expecta-
tions given the training base (where context is defined as extending
from the beginning of the sentence to the input). Note that it is appro-
priate to use these likelihood vectors only for the evaluation phase.
Training must be performed on the actual successor words, because the
point is to force the network to learn the context dependent probabili-
ties for itself.

Evaluated in this manner, the error on the training set is 0.053 (sd:
0.100). The cosine of the angle between output vectors and likelihood
vectors provides another measure of performance (which normalizes
for length differences in the vectors); the mean cosine is 0.916 (sd: 0.123),
indicating that the two vectors on average have very similar shapes.
Objectively, the performance appears to be quite good.

Lexical categories

The question to be asked now is how this performance has been
achieved. One way to answer this is to see what sorts of internal
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representations the network develops in order to carry out the predic-
tion task. This is particularly relevant, given the focus of the current pa-
per. The internal representations are instantiated as activation patterns
across the hidden units which are evoked in response to each word in
its context. These patterns were saved at a testing phase, during which
no learning took place. For each of the twenty-nine unique words, a
mean vector was computed and averaged across all occurrences of the
word in various contexts. These mean vectors were then subjected to hi-
erarchical clustering analysis. Figure 5.2 shows the tree constructed
from the hidden unit patterns for the twenty-nine lexical items.The tree
in Figure 5.2 shows the similarity structure of the internal representa-
tions of the twenty-nine lexical items. The form of each item is random-
ly assigned (and orthogonal to all other items), and so the basis for the
similarity in the internal representations is the way in which these
words 'behave' with regard to the task.

The network has discovered that there are several major categories of
words. One large category corresponds to verbs; another category corre-
sponds to nouns. The verb category is broken down into groups which
require a direct object; which are intransitive; and for which a direct ob-
ject is optional. The noun category is divided into major groups for an-
imates and inanimates. Animates are divided into human and non-human;
the non-humans are subdivided into large animals and small animals. In-
animates are divided into breakables, edibles, and miscellaneous.

This category structure reflects facts about the possible sequential or-
dering of the inputs. The network is not able to predict the precise order
of specific words, but it recognizes that (in this corpus) there is a class
of inputs (viz., verbs) which typically follow other inputs (viz., nouns).
This knowledge of class behaviour is quite detailed; from the fact that
there is a class of items which always precedes chase, break, and
smash, it infers a category of large animals (or, possibly, aggressors).

Several points should be emphasized. First, the category structure
appears to be hierarchical. Dragons are large animals, but also mem-
bers of the class [-human, +animate] nouns. The hierarchical interpreta-
tion is achieved through the way in which the spatial relations of the
representations are organized. Representations which are near one an-
other in representational space form classes, and higher level categories
correspond to larger and more general regions of this space.

Second, it is also the case that the hierarchicality and category bound-
aries are 'soft.' This does not prevent categories from being qualitative-
ly distinct by being far from each other in space with no overlap. But
there may also be entities which share properties of otherwise distinct
categories, so that in some cases category membership may be marginal
or ambiguous.



Figure 5.2: Hierarchical clustering of mean hidden unit vectors following presentation of
each of the lexical items (in context). The similarity structure of the space reflects dis-
tributional properties of the lexical items.
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Finally, the content of the categories is not known to the network. The
network has no information available which would ground the struc-
tural information in the real world. This is both a plus and a minus. Ob-
viously, a full account of language processing needs to provide such
grounding. On the other hand, it is interesting that the evidence for cat-
egory structure can be inferred so readily on the basis of language inter-
nal evidence alone.

Type-token distinctions

The tree shown in Figure 5.2 was constructed from activation patterns
averaged across context. It is also possible to cluster activation patterns
evoked in response to words in the various contexts in which they oc-
cur. When the context sensitive hidden units patterns are clustered, it is
found that the large-scale structure of the tree is identical to that shown
in Figure 5.2. However, each terminal leaf is now replaced with further
arborization for all occurrences of the word. (There are no instances of
lexical items appearing on inappropriate branches.)

This finding bears on the type/token problem in an important way.
In this simulation, the context makes up an important part of the inter-
nal representation of a word. Indeed, it is somewhat misleading to
speak of the hidden unit representations as word representations in the
conventional sense, since these patterns also reflect the prior context. As
a result, it is literally the case that every occurrence of a lexical item has
a separate internal representation. We cannot point to a canonical rep-
resentation for John; instead there are representations for Johnl, John2,
... John. These are the tokens of John, and the fact that they are different
is the way the system marks what may be subtle but important meaning
differences associated with the specific token. The fact that these are all
tokens of the same type is not lost, however. These tokens have repre-
sentations which are extremely close in space - closer to each other by
far than to any other entity. Even more interesting is that the spatial or-
ganization within the token space is not random but reflects differences
in context which are also found among tokens of other items. The to-
kens of boy which occur in subject position tend to cluster together as
distinct from tokens of boy which occur in object position. This distinc-
tion is marked in the same way for tokens of other nouns. Thus, the net-
work has learned not only about types and tokens, categories and
category members; it has also learned a grammatical role distinction
which cuts across lexical items.

This simulation has involved a task in which the category structure
of inputs was an important determinant of their behaviour. The catego-
ry structure was apparent only in their behaviour; their external form
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provided no useful information. We have seen that the network makes
use of spatial organization in order to capture this category structure.
We turn next to a problem in which the lexical category structure pro-
vides only one part of the solution, and in which the network must
learn abstract grammatical structure.

Representation of grammatical structure

In the previous simulation there was little interesting structure of the
sort that related words to one another. Most of the relevant information
regarding sequential behaviour was encoded in terms of invariant
properties of items. Although lexical information plays an important
role in language, it actually accounts for only a small range of facts.
Words are processed in the contexts of other words; they inherit prop-
erties from the specific grammatical structure in which they occur. This
structure can be quite complex, and it is not clear that the kind of cate-
gory structure supported by the spatial distribution of representations
is sufficient to capture the structure which belongs, not to individual
words, but to particular configurations of words.

As we consider this issue, we also note that till now we have neglect-
ed an important dimension along which structure may be manifest, that
is, time. The clustering technique used in the previous simulation in-
forms us of the similarity relations along spatial dimensions. The tech-
nique tells us nothing about the patterns of movement through space.
This is unfortunate, since the networks we are using are dynamical sys-
tems whose states change over time. Clustering groups states according
to the metric of Euclidean distance but, in so doing, discards the infor-
mation about whatever temporal relations may hold between states.
This information is clearly relevant if we are concerned about grammat-
ical structure.

Consider the sentences

(la) The man saw the car.
(Ib) The man who saw the car called the cops.

On the basis of the results of the previous simulation, we would ex-
pect that the representations for the word car in these two sentences
would be extremely similar. Not only are they the same lexical type, but
they both appear in clause-final position as the object of the same verb.
But we might also wish to have their representations capture an impor-
tant structural difference between them. Car in sentence (la) occurs at
the end of the sentence; it brings us to a state from which we should
move into another class of states that is associated with the onset of new
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sentences. In sentence (Ib), car is also at the end of a clause but occurs
in a matrix sentence which has not yet been completed. There are gram-
matical obligations which remain unfulfilled. We would like the state
that is associated with car in this context to lead us to the class of states
which might conclude the main clause. The issue of how to understand
the temporal structure of state trajectories will thus figure importantly
in our attempts to understand the representation of grammatical
structure.
Stimuli and task. The stimuli in this simulation were based on a lexicon
of twenty-three items. These included eight nouns twelve verbs, the rel-
ative pronoun who, and an end-of-sentence indicator, '.'. Each item was
represented by a randomly assigned twenty-six bit vector in which a
single bit was set to one (three bits were reserved for another purpose).
A phrase structure grammar, shown in Table 5.1, was used to generate
sentences. The resulting sentences possessed certain important proper-
ties, which include the following:

Table 5.1

S ->NP VP
NP -> PropN I N I N RC
VP ->V(NP)
RC who NP VP Iwho VP (NP)
N boy I girl I cat I dog I boys I girls I cats I dogs
PropN John I Mary
V —> chase I feed I see \ hear I walk I live 1 chases I

feeds I sees I hears I walks I lives

Additional restrictions:
number agreement between N and V within clause and

(where appropriate) between head N and subordinate V

verb arguments:
hit, feed require a direct object
see, hear -> optionally allow a direct object
walk, live preclude a direct object

(observed also for head/verb relations in relative clauses)
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Agreement

Subject nouns agree with their verbs. Thus, for example, (2a) is gram-
matical but (2b) is not. (The training corpus consisted of positive exam-
ples only; thus the starred examples below did not occur.)

(2a) John feeds dogs.
(2b) *Boys sees Mary.

Words are not marked for number (singular/plural), form class (verb/
noun, etc.), or grammatical role (subject/object, etc.). The network must
learn first that there are items which function as what we would call
nouns, verbs, etc.; then it must learn which items are examples of sin-
gular and plural; and then it must learn which nouns are subjects and
which are objects (since agreement only holds between subject nouns
and their verbs).

Verb argument structure

Verbs fall into three classes: those that require direct objects, those that
permit an optional direct object, and those that preclude direct objects.
As a result, sentences (3a-d) are grammatical, whereas sentences (3e, 3f)
are ungrammatical.

(3a) Girls feed dogs. (D.o. required)
(3b) Girls see boys. (D.o. optional)
(3c) Girls see. (D.o. optional)
(3d) Girls live. (D.o. precluded)
(3e) Girls feed.
(3f) *Girls live dogs.

Again, the type of verb is not overtly marked in the input, and so the
class membership needs to be inferred at the same time as the co-occur-
rence facts are learned.

Interactions with relative clauses

Both the agreement and the verb argument facts are complicated in rel-
ative clauses. While direct objects normally follow the verb in simple
sentences, some relative clauses have the direct object as the head of the
clause, in which case the network must learn to recognize that the direct
object has already been filled (even though it occurs before the verb).
Thus, the normal pattern in simple sentences (3ad) appears also in (4a)
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but contrasts with (4b).

(4a) Dog
who chases cat sees girl.

(4b) Dog who cat chases sees girl.

Sentence (4c), which seems to conform to the pattern established in (3),
is ungrammatical.

(4c) *Dog who cat chases dog sees girl.

Similar complications arise for the agreements facts. In simple sentenc-
es agreement involves N1-V1. In complex sentences, such as (5a), that
regularity is violated, and any straightforward attempt to generalize it
to sentences with multiple clauses would lead to the ungrammatical
(5b).

(5a) Dog who boys feed
sees girl.

(5b) *Dog who boys feeds see girl.

Recursion

The grammar permits recursion through the presence of relative clauses
(which expand to noun phrases which may introduce yet other relative
clauses, etc.). This leads to sentences such as (6) in which the grammat-
ical phenomena noted in (a-c) may be extended over a considerable dis-
tance.

(6) Boys who girls who dogs chase see
hear.
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Viable sentences

One of the literals inserted by the grammar is '.' This mark occurs at the
end of sentences and can, of course, potentially occur anywhere in a
string where a sentence is viable (in the sense that it is grammatically
well-formed and may at that point be terminated). Thus in sentence (7),
the carets indicate positions where a '.' might legally occur.

(7) Boys see A dogs A who see A girls A who hear A.

The data in (4-7) are examples of the sorts of phenomena which lin-
guists argue cannot be accounted for without abstract representations;
it is these representations, rather than the surface strings, on which the
correct grammatical generalizations are made.

A network of the form shown in Figure 5.3 was trained on the predic-
tion task (layers are shown as rectangles; numbers indicate the number
of nodes in each layer).The training data were generated from the
phrase structure grammar given in Table 1. At any given point during
training, the training set consisted of 10,000 sentences, which were

Figure 5.3: Hierarchical clustering of mean hidden unit vectors following presentation of
each of the lexical items (in context). The similarity structure of the space reflects distri-
butional properties of the lexical items.



154 Connectionism: Theory and Practice

presented to the network five times. (As before, sentences were
concatenated so that the input stream proceeded smoothly, without
breaks between sentences.) However, the composition of these sentenc-
es varied over time. The following training regimen was used in order
to provide for incremental training. The network was trained on five
passes through each of the following four corpora.

Phase 1: The first training set consisted exclusively of simple
sentences. This was accomplished by eliminating all relative clauses.
The result was a corpus of 34,605 words forming 10,000 sentences (each
sentence includes the terminal'.'). Phase 2: The network was then ex-
posed to a second corpus of 10,000 sentences which consisted of twen-
ty-five per cent complex sentences and seventy-five per cent simple
sentences (complex sentences were obtained by permitting relative
clauses). Mean sentence length was 3.92 (minimum three words, maxi-
mum thirteen words). Phase 3: The third corpus increased the percent-
age of complex sentences to fifty per cent, with mean sentence length of
4.38 (minimum: three words, maximum: thirteen words). Phase 4: The
fourth consisted of 10,000 sentences, seventy-five per cent complex,
twenty-five per cent simple. Mean sentence length was 6.02 (minimum:
three words, maximum: sixteen words).

This staged learning strategy was developed in response to results of
earlier pilot work. In this work, it was found that the network was
unable to learn the task when given the full range of complex data from
the beginning of training. However, when the network was permitted
to focus on. the simpler data first, it was able to learn the task quickly
and then move on successfully to more complex patterns. The impor-
tant aspect to this was that the earlier training constrained later learning
in a useful way; it forced the network to focus on canonical versions of
the problems, which apparently created a good basis for then solving
the more difficult forms of the same problems.
Results. At the conclusion of the fourth phase of training, the weights
were frozen at their final values and network performance was tested
on a novel set of data, which was generated in the same way as the last
training corpus. The technique described in the previous simulation
was used, and context-dependent likelihood vectors were generated for
each word in every sentence. These vectors represented the empirically
derived probabilities of occurrence for all possible predictions, given
the sentence context up to that point. The rms error of network predic-
tions, compared against the likelihood vectors, was 0.177 (sd: 0.463); the
mean cosine of the angle between the vectors was 0.852 (sd: 0.259). Al-
though this performance is not as good as in the previous simulation, it
is still quite good. And the task is obviously much more difficult.
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These gross measures of however, do not tell us how
well the network has done in each of the specific problem areas posed
by the task. Let us look at each area in turn.

Agreement in simple sentences

Agreement in simple sentences is shown in Figures 4a and 4b. The net-
work's predictions following the word boy are that either a singular
verb will follow (words in all three singular verb categories are activat-
ed, since it has no basis for predicting the type of verb), or the next word
may be the relative pronoun who. Conversely, when the input is the
word boys, the expectation is that either a verb in the plural or a relative
pronoun will follow. Similar expectations hold for the other nouns in
the lexicon.

Verb argument structure in simple sentences

Figure 5.5 shows network predictions following an initial noun and
then a verb from each of the three different verb types. When the verb
is lives, the network's expectation is that the following item will be '.'

Figure 5.4 a: Graph of network predictions following presentation of the word boy. Pre-
dictions are shown as activations for words grouped by category. S stands for end-of-
sentence ('.'); W stands for who; N and V represent nouns and verbs; 1 and 2 indicate
singular or plural; and type of verb is indicated by N, R, O (direct object not possible,
required, or optional).

performance



156 Connectionism: Theory and Practice

(which is in fact the only successor permitted by the grammar in this
context). The verb sees, on the other hand, may either be followed by a
'.' or by a direct object (which may be a singular or plural noun, or prop-
er noun). Finally, the verb chases requires a direct object, and the
network learns to expect a noun following this and other verbs in the
same class.

Interactions with relative clauses

The examples so far have all involved simple sentences. The agreement
and verb argument facts are more complicated in complex sentences.
Figure 5.6 shows the network predictions for each word in the sentence
boys who Mary chases feed cats. If the network were generalizing the
pattern for agreement found in the simple sentences, we might expect
the network to predict a singular verb following Mary chases (insofar
as it predicts a verb in this position at all; conversely, it might be con-
fused by the pattern Nl N2 VI). But, in fact, the prediction (6d) is, cor-
rectly, that the next verb should be in the singular in order to agree with
the first noun. In so doing, it has found some mechanism for represent-
ing the long-distance dependency between the main clause noun and

Figure 5.4 b: Graph of network predictions following presentation of the word boys.
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Figure 5.5: Graph of network predictions following the sequences boy lives ...; boy sees
...; and boy chases ... (the first precludes a direct object, the second optional permits a
direct object, and the third requires a direct object).
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Figure 5.6: Graph of network predictions after each word in the sentence boys who maty
chases feed cats is input.
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main clause verb, despite the presence of an intervening noun and verb
(with their own agreement relations) in the relative clause.

Note that this sentence also illustrates the sensitivity to an interaction
between verb argument structure and relative clause structure. The
verb chases takes an obligatory direct object. In simple sentences the di-
rect object follows the verb immediately; this is also true in many com-
plex sentences (e.g., boys who chase Mary feed cats). In the sentence
displayed, however, the direct object (boys) is the head of the relative
clause and appears before the verb. This requires that the network learn
(a) there are items which function as nouns, verbs, etc.; (b) which items
fall into which classes; (c) there are subclasses of verbs which have dif-
ferent co-occurrence relations with nouns, corresponding to verb direct
object restrictions; (d) which verbs fall into which classes; and (e) when
to expect that the direct object will follow the verb and when to know
that it has already appeared. The network appears to have learned this,
because in panel (d) we see that it expects that chases will be followed
by a verb (the main clause verb, in this case) rather than a noun.

An even subtler point is demonstrated in (6c). The appearance of
boys followed by a relative clause containing a different subject (who
Mary) primes the network to expect that the verb which follows must
be of the class that requires a direct object, precisely because a direct ob-
ject filler has already appeared. In other words, the network correctly
responds to the presence of a filler (boys) not only by knowing where
to expect a gap (following chases); it also learns that when this filler cor-
responds to the object position in the relative clause, a verb is required
which has the appropriate argument structure.
Network analysis. The natural question to ask at this point is how the
network has learned to accomplish the task. It was initially assumed
that success in this task would constitute prima facie evidence for the
existence of internal representations which possessed abstract struc-
ture. That is, it seemed reasonable to believe that in order to handle
agreement and argument structure facts in the presence of relative
clauses, the network would be required to develop representations
which reflected constituent structure, argument structure, grammatical
category, grammatical relations, and number.

Having achieved success in the task, we would now like to test this
assumption. In the previous simulation, hierarchical clustering was
used to reveal the use of spatial organization at the hidden unit level for
categorization purposes. However, the clustering technique makes it
difficult to see patterns which exist over time. Some states may have sig-
nificance not simply in terms of their similarity to other states but with
regard to the ways in which they constrain movement into subsequent
state space (recall the examples in (1)). Because clustering ignores the
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temporal information, it hides this information. It would be more useful
to look at the trajectories, through state space over time, which
correspond to the internal representations evoked at the hidden unit
layer as a network processes a given sentence.

Phase-state portraits of this sort are commonly limited to displaying
not more than a few state variables at once, simply because movement
in more than three dimensions is difficult to graph. The hidden unit ac-
tivation patterns in the current simulation take place over seventy vari-
ables. These patterns are distributed, in the sense that none of the
hidden units alone provides useful information; the information in-
stead lies along hyperplanes which cut across multiple units.

However, it is possible to identify these hyperplanes using principle
component analysis. This involves passing the training set through the
trained network (with weights frozen) and saving the hidden unit pat-
tern produced in response to each new input. The covariance matrix of
the set of hidden unit vectors is calculated, and then the eigen-vectors
for the covariance matrix are found. The eigen-vectors are ordered by
the magnitude of their eigen-values and are used as the new basis for
describing the original hidden unit vectors. This new set of dimensions
has the effect of giving a somewhat more localized description to the
hidden unit patterns, because the new dimensions now correspond to
the location of meaningful activity (defined in terms of variance) in hy-
perspace. Furthermore, since the dimensions are ordered in terms of
variance accounted for, we can now look at phase state portraits of se-
lected dimensions, starting with those with the largest eigen-values.

Agreement

The sentences in (8) were presented to the network, and the hidden unit
patterns captured after each word were processed in sequence.

(8a) boys hear boys.
(8b) boy hears boys.
(8c) boy who boys chase chases boy.
(8d) boys who boys chase chase boy.

(These sentences were chosen to minimize differences due to lexical
content and to make it possible to focus on differences to grammatical
structure. (8a) and (8b) were contained in the training data; (8c) and (8d)
were novel and had never been presented to the network during learn-
ing.) By examining the trajectories through state space along various di-
mensions, it was apparent that the second principal component played
an important role in marking the number of the main clause subject.



Grammatical Structure 161

Figure 5.7 shows the trajectories for (8a) and (8b); the trajectories are
overlaid so that the differences are more readily seen. The paths are sim-
ilar and diverge only during the first word, indicating the difference in
the number of the initial noun. The difference is slight and is eliminated
after the main (i.e., second chase) verb has been input. This is apparent-
ly because, for these two sentences (and for the grammar), number in-
formation does not have any relevance for this task once the main verb
has been received.

It is not difficult to imagine sentences in which number information
may have to be retained over an intervening constituent; sentences (8c)
and (8d) are such examples. In both these sentences there is an identical
relative clause which follows the initial noun (which differs with regard
to number in the two sentences). This material, who boys chase, is irrel-
evant as far as the agreement requirements for the main clause verb are
concerned. The trajectories through state space for these two sentences
have been overlaid and are shown in Figure 5.8; as can be seen, the dif-
ferences in the two trajectories are maintained until the main clause
verb is reached, at which point the states converge.

Verb argument structure

The representation of verb argument structure was examined by prob-
ing sentences containing instances of the three different classes of verbs,
Sample sentences are shown in (9).

(9a) boy walks.
(9b) boy sees boy.
(9c) boy chases boy.

The first of these contains a verb which may not take a direct object; the
second takes an option direct object; and the third requires a direct ob-
ject. The movement through state space as these three sentences are pro-
cessed is shown in Figure 5.9, which illustrates how the network
encodes several aspects of grammatical structure. Nouns are distin-
guished by role; subject nouns for all three sentences appear in the up-
per right portion of the space, and object nouns appear below them.
(Principal component 4, not shown here, encodes the distinction be-
tween verbs and nouns, collapsing across case.) Verbs are differentiated
with regard to their argument structure. Chases requires a direct object,
sees takes an optional direct object, and walks precludes an object. The
difference is reflected in a systematic displacement in the plane of prin-
cipal components 1 and 3.



Figure 5.7: Trajectories through state space for sentences (8a) and (8b). After the indicated
word has been input, each point marks the position along the second principle com-
ponent of hidden unit space. Magnitude of the second principle component is mea-
sured along the ordinate; time (i.e., order of words in sentence) is measured along the
abscissa. In this and subsequent graphs the sentence-final word is marked with a ]S.



Figure 5.8: Trajectories through state space during processing of (8c) and (8d).



Figure 5.9: Trajectories through state space for sentences (9a), (9b), and (9c). Principal
component 1 is plotted along the abscissa; principal component 3 is plotted along the
ordinate.
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Relative clauses

The presence of relative clauses introduces a complication into the
grammar in that the representations of number and verb argument
structure must be clause-specific. It would be useful for the network to
have some way to represent the constituent structure of sentences. The
trained network was given the following sentences.

(lOa) boy chases boy.
(lOb) boy chases boy who chases boy.
(lOc) boy who chases boy chases boy.
(lOd) boy chases boy who chases boy who chases boy.

The first sentence is simple; the other three are instances of embedded
sentences. Sentence lOa was contained in the training data; sentences
l0c, l0d, and l0e were novel and had not been presented to the network
during the learning phase.

The trajectories through state space for these four sentences (princi-
pal components 1 and 11) are shown in Figure 5.10. Panel (l0a) shows
the basic pattern associated with what is in fact the matrix sentences for
all four sentences. Comparison of this figure with panels (l0b) and (l0c)
shows that the trajectory for the matrix sentence appears to be the same
when; the matrix subject noun is in the lower left region of state space,
the matrix verb appears above it and to the left, and the matrix object
noun is near the upper middle region. (Recall that we are looking at
only two of the seventy dimensions; along other dimensions the noun/
verb distinction is preserved categorically.) The relative clause appears
to involve a replication of this basic pattern but is displaced towards the
left and moved slightly downward relative to the matrix constituents.
Moreover, the exact position of the relative clause elements indicates
which of the matrix nouns are modified Thus, the relative clause modi-
fying the subject noun is closer to it, as is the relative clause modifying
the object noun. This trajectory pattern was found for all sentences with
the same grammatical form; the pattern is thus systematic.

Figure 5.10d shows what happens when there are multiple levels of
embedding. Successive embeddings are represented in a manner which
is similar to the way that the first embedded clause is distinguished
from the main clause; the basic patter for the clause is replicated in the
region of state space, which is displaced from the matrix material. This
displacement provides a systematic way for the network to encode the
depth of embedding in the current state. However, the reliability of the
encoding is limited by the precision with which states are represented,
which in turn depends on factors such as the number of hidden units



Figure 5.10: Trajectories through state space for sentences (l0a-d). Principal component 1
is displayed along the abscissa; principal component 11 is plotted along the ordinate.
It is interesting, although not a key point of this paper, that these abstract composition-
al relations are in fact learned by the network rather than innately specified. I assume
that any theory of language must be learnable. How much is learned by individual lan-
guage users in their lifetime, and how much is 'learned' through evolutionary mecha-
nisms is an interesting question but orthogonal to the issues currently at hand.



Grammatical Structure 167

and the precision of the numerical values. In the current simulation, the
representation degraded after about three levels of embedding. The
consequences of this degradation on performance (in the prediction
task) are different for different types of sentences. Sentences involving
centre embedding (e.g., 8c and 8d), in which the level of embedding is
crucial for maintaining correct agreement, are more adversely affected
than are sentences involving so-called tail recursion (e.g., l0d). In these
latter sentences the syntactic structures, in principle, involve recursion,
but in practice the level of embedding is not relevant for the task (i.e.,
does not affect agreement or verb argument structure in any way).

Figure 5.10d is interesting in another respect. Given the nature of the
prediction task, it is actually not necessary for the network to carry for-
ward any information from prior clauses. It would be sufficient for the
network to represent each successive relative clause as an iteration of
the previous pattern. Yet the two relative clauses are differentiated. Sim-
ilarly, Servan-Schreiber, Cleeremans, and McClelland (in press) found
that when a simple recurrent network was taught to predict inputs that
had been generated by a finite state automaton, the network developed
internal representations which corresponded to the FSA states; howev-
er, it also redundantly made finer-grained distinctions which encoded
the path by which the state had been achieved, even though this infor-
mation was not used for the task. It thus seems to be a property of these
networks that while they are able to encode state in a way which mini-
mizes context as far as behaviour is concerned, their nonlinear nature
allows them to remain sensitive to context at the level of internal
representation.

Discussion

I began by asking whether distributed representations could be used to
encode grammatical relations, and, in particular, whether they could
represent the embedding relationships in relative clauses. The results of
the second simulation are encouraging and suggest that the networks
of the sort studied here can support compositional relationships.

At this point it is reasonable to see if we can more precisely under-
stand the nature of the mechanism that is used to represent the part/
whole hierarchies. Does the mechanism differ from the traditional ap-
proach? If so, are the differences desirable or not? These are difficult
questions, and only tentative suggestions can be made at this time.
However, two aspects stand out with particular salience. First, the rep-
resentational apparatus used by these networks has definite limitations.
The representations have a finite precision, and they degrade over time
(since they are continually recycled and passed through a nonlinear
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squashing function). Second, the representations are highly context-
sensitive. Even when contextual information is not needed, there is a
tendency for the states of the system to reflect the path that was taken
to get there.

The finite precision and tendency to degrade over time are, in fact,
consistent with the observed abilities of language users. The represen-
tations, while continuously valued (in multidimensional space), have a
finite precision. Locations in this space that are sufficiently close will be
treated as identical. Furthermore, because these representations are re-
peatedly cycled through the nonlinear activation function of the hidden
units (which tends to push them towards the centre of representational
space), information cannot be held indefinitely. This limitation accounts
for the difficulty the network has in processing centre embedded sen-
tences compared with right-branching structures; compare (lla) with
(l1b):

(lla) The boy who the girl who the cat sees knows walks,
(l1b) The boy likes the girl who knows the cat who walks.

Information in the network degrades equally over time in both sen-
tences; but it is only in the centre-embedded sentence that early infor-
mation is needed in later parts of the sentence; the right-branching
structures can continue indefinitely, because the network does not need
to refer back to earlier (lost) information. Note that this is not to say that
the network cannot process centre-embedded sentences, only that its
ability to do so is limited (and less than right-branching sentences).

This characteristic of the network - its finite state quality - is inter-
esting in light of Chomsky's (1957) argument against the sufficiency of
Finite State Markov processes (or automata; FSA) as models for natural
language grammar. There were actually two arguments advanced.

The strong argument rested on the observation that natural languag-
es (such as English) contain classes of sentences (such as relative claus-
es) which permit infinite recursion. Such infinite recursion is beyond
the capacity of FSA's. Of course, in reality, sentences do not take advan-
tage of infinite recursion. There are no English sentences which are infi-
nitely long. If one is willing to arbitrarily fix an upper limit to the degree
of recursion (or sentence length), choosing a limit sufficiently high that
all sentences in the history of the language could be generated, then, in
fact, it is possible to devise an FSA which could generate this set.

Consideration of this point leads to the second argument against the
sufficiency of FSA's as models of natural language. This fall- back posi-
tion is that although the construction of an FSA, given an arbitrary limit
on sentence length, would not literally be impossible, it 'will be so



Grammatical Structure 169

complex that it will be of little use or interest' (Chomsky 1957: 23). An
example of such a grammar would be a list of the sentences of the lan-
guage. 'In general, the assumption that languages are infinite is made
in order to simplify the description of the language. If a grammar does
not have recursive devices it will be prohibitively complex. If it does
have recursive devices of some sort, it will produce infinitely many sen-
tences' (ibid, 24-5), Savitch (in press) has made a similar point and ar-
gued that there are classes of languages which are more perspicuously
treated as 'essentially infinite/ even though they may have a finite
number of sentences.

This second argument is, technically, the weaker of the two, since it
depends on ill-defined and controversial notions of simplicity. But the
intuitive appeal of this position should nonetheless be clear. Leaving
aside the definition or even desirability of simplicity as a goal, I take it
as at least desirable that grammars should provide insight into languag-
es. Chomsky's claim was that FSA's - as understood at that time - can
not in principle offer such insight. The current work provides an exam-
ple of a machine which is a finite state device, yet which may well sat-
isfy the desideratum for a mechanism whose form explicates the
systematic properties of the language it produces. The machine is not
literally recursive, both because of limited depth and, more important-
ly, because of leakage across levels (see below); but it allows structures
to be combined hierarchically in what could be called (following Sav-
itch's terminology) an 'essentially recursive' manner.

Let us now turn to the second way in which the networks appear to
differ from conventional devices. This second characteristic may repre-
sent a more significant departure from the traditional approach. As not-
ed earlier, Servan-Schreiber, Cleeremans, and McClelland (in press)
found that, although their task only required that the network encode
information in terms of a finite number of discrete states (in order to act
like an FSA), the representations reflected the path information as well.

A similar effect can be found in the networks studied here. For exam-
ple, the language learned by these networks contained classes of sen-
tences such as (12):

(12) {boy, girl, cat, dog, John, Mary} chases ...

In this language, there were no meaningful consequences attendant
upon the choice of subject, in fact the state of the network when it re-
ceives the verb chases is different from what it is as a function of the
subject. The difference is systematic across verbs. The subject Mary, for
example, perturbs the state of the network when it processes chases in
a way that affects the representation of other verbs. In other words, the
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precise representation of the verb reflects not only properties of the verb
but who the subject is as well.

At first, this seems odd, and it is certainly at variance with the classi-
cal approach to compositionality. In classical theories, complex repre-
sentations are constructed following a building block metaphor. Each
element is positioned in a larger structure and function is like a building
block; that is to say, elements are not affected by their position nor do
they interact in any way. The mechanism here, on the other hand, is
highly interactive. Representational elements are subject to subtle ad-
justments as they combine. The resulting structure is not just the sum of
the parts; it reflects interactions between those parts as well.

This sort of context-sensitivity appears to be very similar to the no-
tion of accommodation, as developed by Langacker (1987), for cognitive
grammar. Because this view of how composition works differs signifi-
cantly from generative accounts, it is worth citing Langacker's com-
ments at length.

It must be emphasized that syntagmatic combination involves more than the
simple addition of components. A composite structure is an integrated sys-
tem formed by coordinating its components in a specific, often elaborate man-
ner. In fact, it often has properties that go beyond what one might expect from
its components alone. Two brief observations should make it clear why this is
so. First, composite structures originate as targets in specific usage events. As
such they are often characterized relative to particular contexts with proper-
ties not predictable from the specifications of their components as manifested
in other environments. A related point is that one component may need to be
adjusted in certain details when integrated with another to form a composite
structure; I refer to this as accommodation. For example, the meaning of run
as applied to humans must be adjusted in certain respects when extended to
four legged animals such as horses, dogs, and cats (since the bodily motion
observed in two legged running is not identical to that in four legged run-
ning); in a technical sense, this extension creates a new semantic variant of the
lexical item. (Langacker 1987; 76-7)

It is true that current work does not take advantage of the network's
propensity to combine elements in a highly context-sensitive manner;
but it should not be difficult to imagine ways in which it could. If any-
thing, the emergence of this property, despite not being utilized by the
task that is taught, illustrates that it is central to the mechanism.

This sensitivity to context also occurs across levels of organization.
Not only may the verb in the main clause be represented in a manner
which reflects the main clause subject, but embedded material may also
be coloured by elements in other clauses. Thus, the representation of
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hierarchical structure does not use 'true' recursion, in which informa-
tion at each level of processing is encapsulated and unaffected by infor-
mation at other levels.

Again, one can ask whether this is good or bad. Certainly, there are
many situations in which one wants the informational encapsulation af-
forded by true recursion. Many programming languages, for instance,
depend crucially on the assumption that a procedure may be re-entered
without contamination from earlier invocations. But, for natural lan-
guage, I think a strong argument can be made for the desirability of
what I will call the 'leaky recursion' provided by simple recurrent
networks.

The implicit claim of strict recursion—or more generally, of a machine
which uses a stack mechanism to construct hierarchically organized
structures - is that, normally, information at different levels of a com-
plex structure should be processed autonomously, and that there will be
minimal interaction with information at other levels. But this is rarely
the case for linguistic structures. Relative clauses, for instance, typically
have an elaborative function; they provide information about a head
noun phrase (which is at a higher level of organization). Adverbial
clauses perform a similar function for main clause verbs. In general,
subordination involves conceptual dependence between clauses (Lan-
gacker in press; Chapter 10). Thus, it may be more important that a
language processing mechanism facilitate interactions across levels of
organization rather than impede the flow of information.

As one extreme example, consider the case of long-distance depen-
dency relations. These are cases where one element in a sentence is in
some way dependant on another element in the sentence, but the two
are separated in linear order and also, possibly, across different levels of
organization. Information which in some sense coheres is broken; and
the problem for the listener, presumably, is to recognize the dependency
in spite of the (apparent) dislocation.

(12a) Who does Jeremy suspect Emily wanted me to invite to the
party?

(12b) It's the one on the left I want.
(12c) I saw the car that Mary said a thief had broken into.
(12d) Under which toadstool did you say there's a pot of gold?

In (12a) 'who' refers to the person whom Emily invited to the party;
in the clefted sentence (12b), the object phrase occurs at the beginning
of the sentence; in (12c) the head of the relative clause ('car') is also the
object of the verb at the end of the sentence; and in (12d), the preposi-
tional phrase has been topicalized and thus appears at the beginning of
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the sentence. In many cases the dependency has a morphological reflex;
thus in (12a) the form of the interrogative pronoun is determined by the
fact that it is a person and not a thing, animal, concept, etc. that can be
invited to a party. In some dialects, the pronoun would, additionally, be
marked in the accusative.

The dependency may range over a considerable distance and may
span multiple levels of organization. This raises an interesting and dif-
ficult problem for a system which utilizes a stack device to construct
complex hierarchies, as do (at least implicitly) generative grammars.
Stacks have an important limitation: Information is stored in them by
pushing the current contents 'down' one level (like a stack of dishes)
and storing new information on top; and information on the top may be
pulled off, causing the contents below to pop up. In other implementa-
tions, information may be pulled off the bottom, according to the prin-
ciple of 'first-in-first-out.' In either event, information in the middle (or
at the wrong end) must percolate up or drip down one level at a time.

This limitation has curious consequences when one wants to account
for long-distance dependencies of the sort illustrated in (12). As we
have seen, the form of the pronoun is determined by information which
occurs in a subordinate clause (two levels down). But in a stack, infor-
mation is not normally available across levels. The implementation of
this restriction in generative linguistics is subjacency, which constrains
movement of constituents, as shown in (13) (Chomsky 1973f). A constit-
uent in position Y may not move to position X, where X and Y are sep-
arated by more than one nesting level, as defined by a bounding node.
(What constitutes a bounding node is a matter of some dispute.)

(13) Constraint on Subjacency:

where , = [ S or NP]

The solution that is proposed to this dilemma is quite clever. Let us sup-
pose that one has a sentence such as (14).

(14) Who do you think the fans believe the umpire should fine?

We might imagine that this sentence has the structural configuration
shown in (15), and that 'who' originates in the position it would have
as direct object of the verb 'fine.' Then we can account for the fact that
it has the form appropriate to its grammatical usage. We derive the
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question by percolating the interrogative pronoun up successive layers
of the hierarchy (i.e., letting it move up the stack) one level at a time.

Such analyses, in which constituents are moved around in the course
of deriving a sentence, are common in many generative theories. Al-
though this notion of deriving a sentence through (among other things)
moving constituents around may strike us as contrived and unnatural,
we can see that it is entirely consistent with - indeed, is strongly encour-
aged by - the stack machine which implicitly underlies much of gener-
ative linguistic theory.

In contrast, the network architecture described here uses a represen-
tational mechanism in which there is no movement of constituents.
There is no notion of derivation of sentences through intermediate
forms. Still, sentences may have a hierarchical structure, and there may
be long-distance dependencies between distal elements in a sentence.
Recall, for example, that the simulation reported here involved relative
clauses, in which there is a long-distance conceptual dependency be-
tween the head noun and the embedded clause. The network learned
this dependency, with the consequence that its expectations regarding
noun/verb number agreement and location of arguments were correct
(see Figure 5.6). But there is no movement of elements.

The key to the network's ability to encode a conceptual dependence
between hierarchically disjoint elements is actually quite simple, but
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gets to the heart of the difference between the state representation of hi-
erarchy and the stack representation. As we have already seen, informa-
tion in a stack is encapsulated. In the state representation, on the other
hand, all of the information about hierarchical structure is contained in
a state vector (realized here as the context layer). This state vector is en-
tirely visible to the processor. Thus, all the information is available simul-
taneously. (Simplistically, one can think of the state representation as a
bit like what one would have if one took a traditional stack, replaced the
walls with transparent material, and turned the entire device on its side;
the result would be a kind of horizontal glass stack. This metaphor is
not entirely accurate, since the state representation encodes information
along many dimensions simultaneously; and the state representation
facilitates interactions between dimensions in a way which is not con-
veyed by the image of the horizontal glass stack. But it conveys the idea
that information from all levels of processing is available.) Because the
information is visible in this manner, there is no need to move constitu-
ents around. They may all jointly participate in shaping the interpreta-
tion of the sentence.

I take this property to constitute perhaps the most striking difference
from traditional language processing mechanisms. It suggests a con-
ception of composition which emphasizes integration and interaction.
These are, I believe, desirable traits for a language processor; they are
also highly compatible with the theory of language that has been devel-
oped by Langacker (1988).

It is obvious that the current work raises many questions. For exam-
ple, although the state vectors contain information that spans hierarchi-
cal structure (while respecting it), the relative accessibility of this
information remains to be determined. The fact that the entire state is
visible to the processing mechanism does not mean that all information
is equally available. There are known constraints on what information
can be co-ordinated in natural language; thus, certain grammatical
forms seem to impede or block access to information (e.g., the infelicity
of 'Who do you like the fad that she said no to?'). A project is currently di-
rected towards trying to understand whether the state representations
developed in simple recurrent networks have consequences for pro-
cessing which might explain such facts.

While much work remains to be done, the current work is encourag-
ing. The networks studied here have properties which seem to be gen-
uinely different from those of traditional processing mechanisms but
which are very plausible for the processing of natural languages.
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COMMENT

Making Conceptual Space
Tim van Gelder

When connectionists take up the task of modelling aspects of language
processing using distributed networks, one of the most striking facts
about the representations that are subsequently developed is also one
of the most basic - namely, that they take the form of vectors, or, more
accurately and revealingly, points in the (partial) state space of a dynamical
system. The possibility that mental representation quite generally might
take this form was, as far as I know, first articulated by Paul Church-
land, who proposed, in a 1986 article in the philosophical journal Mind,
that 'the brain represents various aspects of reality by a position in a suit-
able state space' (1986: 280). To avert the dumbfounded skepticism that
this preposterous claim would inevitably provoke in philosophers and
others safely removed from the conceptual frontiers of science, Church-
land provided some plausible sketches of how the 'knowledge' in-
volved in capacities such as sensorimotor coordination and sense
perception could take the form of points in a state space. Moreover,
aware of the seemingly vast difference between problems of sensorim-
otor coordination and what is normally thought of as cognitive perfor-
mance - reasoning, language use, and the like - he went on to speculate
that: 'One might try to find ... a way of representing "anglophone lin-
guistic hyperspace" so that all grammatical sentences turn out to reside
on a proprietary hypersurface within that hyperspace, with the logical
relations between them reflected as spatial relations of some kind (305).'
At the time this came across as an exciting but nevertheless hopelessly
bold speculation. It seemed to belong to a category of empirical claims
that, in Tom Nagel's terms, might turn out to be true but are such that
we do not yet have even the slightest idea how they could be true.

Fortunately, a few years later, after an explosion of connectionist
work and its application to an increasingly broad range of aspects of
cognition, we are in a very different position. The aura of mystery sur-
rounding this hypothesis is rapidly being dissolved by connectionist
explorations of how language might be processed. Jeff Elman's work
with simple recurrent network (SRN) models of sentence processing is
a prime example of such research.1 It can be understood as constituting
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at least the beginnings of an explanation of how it might in fact be true
that mental representations, even of complex linguistic structures, are
points in the state space of a dynamical system; and, correspondingly,
how the geometrical analysis of dynamical systems might be a more
powerful conceptual framework than, say, rule-governed inference in
predicate calculus, for understanding how mental representations are
transformed.

In particular, Elman's work enables us to enrich the bold suggestion
that 'all grammatical sentences turn out to reside on a proprietary hy-
persurface' in a variety of ways. Perhaps most obviously, we now have
at least a qualitative sketch of the kind of shape that might be possessed
by the 'hypersurface' formed in response to at least one language pro-
cessing task - that of predicting the next word in simple English sen-
tences. Once the network has been adequately trained, the hidden unit
activation patterns formed after the partial or complete presentation of
sentences fall, in a decidedly regular way, into regions of the overall
'hidden unit state space/ lending to that space a kind of intricate hier-
archical structure.2 Roughly speaking, the most generic partition of the
space into regions is syntactically based: presenting sentence fragments
culminating in nouns sends the hidden unit patterns into one broad re-
gion of the space, while presenting fragments culminating in verbs
sends them to another. Within the noun region there are 'semantic' re-
gions where the network ends up if the sentence fragment ends in a
noun of a given semantic type, such as animate as opposed to inanimate;
within the animate region, there are regions for animal and human; with-
in the human region, there are further semantically based subdivisions
for the kind of human. Remarkably, within these restricted 'semantic'
domains, syntactically based divisions begin to emerge once again: thus
the network ends up in a different portion of the '.boy' region if the sen-
tence fragment is one in which 'boy' has appeared in object position
than it does if the sentence is one in which it appeared as subject.

All these regions are formed, of course, in a high dimensional space,
one that defies scrutiny by means of our native imaginative abilities.
Cluster analysis is one reasonably effective way of gaining at least a
glimpse of the internal structure of this space, although it only works by
reducing all spatial relationships between representations to relation-
ships of distance alone. To get a feel for how representations are actually
located with respect to one another, it seems that the best we can do is to
examine the projection of the various points and regions onto selected
2-D planes, or perhaps even 3-D volumes, which provide a kind of very
narrow window onto high dimensional space. While techniques such as
principal components analysis can help select an appropriate plane to
use as a window, any such reduction of a high dimensional space that
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is itself intricately divided and subdivided into regions inevitably
leaves much of the action lost from view.

Nevertheless, even at this stage a certain amount of progress can be
made in trying to understand, in at least a qualitative way, the kind of
structure the space of internal representations has, and indeed must
have, if the network is to be able to carry out any reasonably complex
language processing tasks. For example, we would be wrong if we sup-
posed that the hierarchical partitioning of high dimensional space into
regions is like the division of Europe into countries, countries into states
or provinces, states into counties, and so on. There are many things
wrong with this structural metaphor, but, most obviously, it mistakenly
assumes that the regions at any level are neighbouring, in the sense of
sharing a border with each other. This would imply that, just as there
are Germans living only a few miles from Swiss, there would be points
in, say, the noun region, which were very close to points in the verb re-
gion. The cluster analysis diagram itself shows this to be mistaken: the
whole point is that noun-fragment representations cluster together in
the diagram precisely because they are all similar to each other, and
more similar to each other than they are to any verb-fragment represen-
tation. Thus there must be considerable open space between the
clusters.

A more suitable spatial metaphor for this kind of structure is a cosmic
one: the space as a whole corresponds to the universe, which contains
individual galaxies separated by vast distances. Within a given galaxy,
of course, there are further star clusters, but these are also separated by
distances greater than the distances between the elements of the cluster;
these clusters, in turn, contain solar systems in which individual plan-
ets are all closer to each other than they are to any of the planets of any
other solar system. This nested clustering is a crucial feature of the con-
nectionist system, for it is by this means that the system maintains, as
far as possible, the distinctness of representations that is essential to ef-
fective processing. In a symbolic approach representations are kept
clearly type-distinct by being systematically constructed from tokens of
primitive symbols, which are themselves easily distinguished. In these
connectionist systems, that role is filled by separation in the space, i.e.,
by leaving relatively large areas of 'no man's land' between clusters at
any level of analysis.

To what do these galaxies and solar systems correspond? That is real-
ly just the question: what is the functional (and hence representational)
significance of one region of the space as opposed to another? I have al-
ready mentioned how, in the space developed in Elman's SRN sentence
prediction models, certain regions correspond to coarse syntactic
features, while regions inside those correspond to semantic properties,
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and regions inside those correspond to more fine-grained syntactic dis-
tinctions. Thus, interestingly, the network is making no categorical dis-
tinction between syntactic and semantic features of the sentence
fragment - or, putting the same point a slightly different way, there is
no 'proprietary hypersurface' on which representations of purely syn-
tactic structures are to be found independently of the representations of
semantic features of those same structures. Both syntactic and semantic
features tend to 'push' the point around in modelling space, and at
some scales semantic features make the biggest difference, while at oth-
ers - both above and below - syntax rules.

What underlies this relative indifference to the usual firm syntax ver-
sus semantics distinction? The particular character of the hidden unit
representations results from at least two important general features of
much connectionist modelling. The first is what Elman has described as
an inherent functionalism — the idea that networks typically develop rep-
resentations which encode just enough information to enable them to
perform the particular task at hand, and that they encode that informa-
tion in a form that is suited to performing that task. In this case the task
is prediction of the next word of the sentence, and so the network is re-
taining as best it can, in the activity of the hidden units, just that infor-
mation about the input sentence which is most relevant to predicting
the next word. From our point of view, that information is regarded as
a robust stew of syntactic and semantic considerations. However, from
the network's point of view, that information is just a matter of the word
order in the input thus far and how that compares with word order in
all previously experienced sentences. Syntactic and semantic con-
straints are, as far as it is concerned, generically the same kind of thing,
for both just amount to more or less coarse regularities in word order in
the sets of sentences on which they were trained.

The second general feature is that these representations are genuinely
distributed not merely in the obvious sense that they are patterns taking
place over a large set of hidden units, but - primarily - because they en-
code the relevant information about the input in a superimposed fashion.
Roughly speaking, information is stored in a superimposed fashion
when one cannot find a more local' correspondence between various
parts of the stored information and parts of the representation itself. In
the classic example, a hologram is a genuinely distributed representa-
tion, because every part of the scene is represented over the whole sur-
face of the hologram. In the current case, the hidden unit activation
pattern which results from presentation of a sentence fragment is what
has come to be described as a 'gestalt' of the relevant features of that
whole fragment. The various aspects of the input sentence fragment
that are effectively represented in the hidden unit activity pattern - such
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as the fact that a word of a given type was last presented, that a main
verb is still required, that the subject was singular -- are stored there in
such a way that there is no discrete part of the activity pattern corre-
sponding to each distinct component of the information. A partial ex-
planation of this is to be found in the structure of the network itself.
Since one layer is fully connected with the next, each hidden unit will
vary its activity as a function of the whole of each input word; thus
all features of the input tend to end up encoded over the whole set of
hidden units.

Once we see that the representation of information can be effectively
distributed in this way, it appears that there is no reason, in principle, to
stop at the relatively modest stage of superimposing syntactic and se-
mantic aspects of a single sentence. Thus, for example, a point in hidden
unit activity space might correspond to two sentences, or to a whole
paragraph, or perhaps even to the current stage in a conversation. In
such cases just the information (concerning larger chunks of text) that is
functionally relevant to performing some particular task would be en-
coded simultaneously and coextensively over the whole hidden unit
pattern. Similarly, there is no apparent reason that a pattern should be
restricted to storing just syntactic and semantic information together.
An adequate prediction of what word will come next in a sentence de-
pends in general on a host of further subtle contextual and pragmatic
factors. For example, after hearing the sentence fragment, 'Get the/ you
would make very different predictions about what the next word was
likely to be if you knew the speaker was your grandmother than you
would if it you knew it was Eddie Murphy (well known for his ribald
embellishment of 'get out of here'). More traditional explanations of the
difference here would combine a representation of the sentence with a
separate representation of the fact that it was your grandmother who
spoke it (together with some kind of further encoded knowledge about
what kinds of things your grandmother does and does not usually say).
But why could not knowledge of this contextually significant informa-
tion simply correspond to another kind of shift of location in the space?
Perhaps, in other words, grandmother-sayings will tend to be found in
one area and Eddie Murphy-sayings in another; or perhaps these differ-
ences are encoded in shifts within broad regions already determined by
more dominant factors. The general point is that if - as Elman's work in-
dicates - the factors relevant to prediction or inference are represented
by shifting the point which constitutes the representation of the current
situation around in the space, then we should at least entertain the pos-
sibility that all factors relevant to the task - or at least a much wider
range of such factors - correspond to some shift or other in some
suitably expanded space.
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Trying to peer way over the horizon, we eventually hope to see a net-
work in which the task is not just prediction of the next word in the sen-
tence but, rather, production of another sentence which is inferentially
or pragmatically appropriate to the one(s) just encountered. Presum-
ably, in such a system the relevant linguistic' units are still to be encod-
ed as points in a space, and that space must make possible the encoding
of all the functionally relevant distinctions. Clearly, any such space
would require an extraordinarily intricate hierarchical structure of re-
gions within regions. It is not merely that there is a diversity of function-
ally relevant factors that must correspond to shifts of location in the
space. The problem is also that, even if we were encoding grammatical
structure alone, we are confronted with the problem of the 'infinite' or
'productive' nature of our linguistic competence. Elman has convinc-
ingly shown how fine grammatical properties, such as the depth of em-
bedding of a clause, correspond to subtle shifts of location of the
representations. But what kind of structure would the space need to
have if the network could represent and process arbitrarily complex
grammatical structures - for example, sentences with no limit on the
number of centre-embedded clauses? At this stage the galactic meta-
phor used above breaks down, because it implies strict lower limits on
the scale at which one can see the hierarchical structure of regions (i.e.,
at the level of individual suns and planets). In theory, at least, we need
a structure that is 'galaxies all the way down' - an infinite cascade of re-
gions with differing functional significances, such that every possible
grammatical structure finds an appropriate location in space.

Envisaging the structure of this kind of space is only possible on the
basis of strange new metaphors drawn - as Jordan Pollack has stressed
— from the domain of fractal mathematics. For example, one construct
with an infinitely deep structure of nested regions (i.e., 'galaxies all the
way down') is the classical Cantor Set. This is a set of points obtained in
the following way. Begin with the set of all points on the unit interval
(the segment of the real number line between 0 and 1) and delete the
middle third open subinterval - that is, every point between 1/3 and 2/
3, although being careful to not to delete these two points themselves.
We are now left with two intervals, each 1/3 the length of the original.
Now delete the middle third open subinterval of each of these, and the
middle third open subinterval of the remaining intervals, and so on ad
infinitum. What remains is usually termed a 'dust' - an infinite set of
points, systematically arranged in an infinitely deep hierarchy of clus-
ters, such that between any two clusters at the same level there is a gap
as big as those clusters. Thus, paradoxically, in this dust the strict sepa-
ration between clusters (and, eventually, points) is maintained at any
level one cares to examine, even though, given any distance, no matter
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how small, one can find an unbounded number of clusters that are less
than that distance apart.

The claim, then, is that the structure of the space of mental represen-
tations must be analogous, in a deep way, to that of the Cantor Set. Mak-
ing sense of this claim requires seeing how there could be an
appropriate mapping from what we might call 'linguistic manifolds' -
that is, the totality of features of some linguistic situation that are rele-
vant to some processing task - onto points in this kind of intricately
subdivided space. Restricting attention once again to the problem of
representing just grammatical aspects, what we need, in effect, is a map-
ping from an unbounded set of complex grammatical structures onto
points of the Cantor Set - or, more generally, onto points of some ana-
logue of the Cantor Set in some space with a suitably enlarged number
of dimensions - such that the mapping preserves all relevant grammat-
ical distinctions as spatial relationships. This kind of problem is clearly
soluble in principle, as Pollack has elegantly shown with a simple exam-
ple. He considered the relatively simple problem of assigning to all pos-
sible binary trees a distinct number between zero and one. Clearly, such
a mapping has to be recursively specified - that is, the number assigned
to a complex tree has to be obtained from the numbers assigned to its
subtrees. The method he came up with, which involved interleaving the
digits from the binary-fractional numerals for the two subtrees to obtain
the numeral for the tree itself, results in a space with a 'devil's staircase'
structure, which is graphically revealed when the number for a given
tree is plotted against the numbers for its subtrees.3 In this structure ev-
ery point has a different height (i.e., every possible tree is assigned a
unique number), yet the space is clearly divided into distinct plateaus,
which themselves contain subplateaus, and so on. Note, however, that
this mapping does not preserve at least one important feature of the ga-
lactic or Cantor Set metaphor, which is that clusters be separated by rel-
atively wide regions of open space.

Is the problem soluble in practice? What we require is a network
which performs a mapping from grammatical structures to points in,
say, hidden unit activation space, such that the resulting space of repre-
sentations has the kind of infinitely nested hierarchical structure that is
needed in order that the system might be able to generate linguistic per-
formance comparable to our own. Since connectionist networks (with
sufficiently high connectivity) implement distributing transformations
from input to hidden layers, the problem can be recast as one of search-
ing the 'space' (here used in a slightly different sense) of possible dis-
tributing transformations to find one that results in an appropriately
structured output. Alternatively, and equivalently, the problem
concerns searching the 'space' of dynamical systems, systems which in
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this case happen to be implemented as neural networks, to find one
whose behavioural topology effectively differentiates its own state
space into a Cantor Set-like structure of regions.

How is this search conducted? Since the space of possible distribut-
ing transformations is so vast, and since we are not yet quite sure exact-
ly what it is that we are looking for anyway, the practice so far has been
to choose a relatively circumscribed task and to train a network to per-
form adequately on a series of instances of that task, known as a 'train-
ing corpus.' Thus, in Elman's models, the task was to predict the next
word in a sentence, and he trained a network on a corpus of sentence
instances. Linguistic competence, of course, is by its nature productive,
so, paradoxically, the training corpus represents only a vanishing por-
tion of the instances on which that task is defined, no matter how large
the training corpus happens to be. The hope is that training on this par-
ticular set of instances will somehow induce the right structure in the
space of internal representations (i.e., select the right distributing trans-
formation, mould an appropriate dynamical system), such that any fu-
ture input will find that a suitable niche in the space of internal
representations has already been prepared for it. To throw out yet an-
other metaphor, the training instances are supposed to act like the poles
of a circus tent, strategically placed such that when the canvas is draped
over them they define an appropriate overall shape for the tent. Like-
wise, the training instances are supposed to constrain the training pro-
cess to come up with a network implementing a dynamical system
whose behavioural topology is appropriate not just for the training in-
stances themselves but also for all instances 'in between/ Clearly, the
more tent poles one has the more precisely one can arrange the shape of
the whole tent. If we wanted to give a real circus tent some kind of gen-
uine 'devil's staircase' structure, nothing short of an infinite number of
tent poles would suffice. Analogously, it would seem, developing a net-
work with an internal representation space with the right kind of infi-
nitely deep structure of nested regions would require an infinite
training corpus. Since this is out of the question, it is worth asking how
connectionists might ever hope to develop reasonably general
language-processing abilities by training networks in strictly limited
training environments.

One response begins by acknowledging that while language itself
may well be best understood as truly productive in nature, our actual
linguistic performance, while certainly very impressive, is limited.
Thus, it is literally false to claim that we are capable of dealing appro-
priately with arbitrarily complex linguistic structures, and there are
well-known examples illustrating how performance breaks down as
grammatical complexity compounds: our inability to deal with very
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many centre-embeddings in one sentence is the classic case. One of the
pivotal issues in thinking about the plausibility of various kinds of cog-
nitive architectures is whether these kinds of performance limitations
should be seen as somehow built into the architecture, or whether such
limitations should be seen as resulting from (relatively uninteresting)
resource restrictions on mechanisms which are themselves, in principle,
truly productive in nature. The current connectionist response to the
apparent need for an infinite training environment tends to side with
the former approach. It takes seriously the actual limitations on our per-
formance, regarding them as indicative of the actual shape of the inter-
nal mechanisms generating that performance rather than as indicative
of contingent resource problems. Consequently, it doubts the need for
an internal representation space with a genuine, infinitely deep fractal
structure; rather, the nested hierarchy of functionally significant regions
needs only to be deep enough to account for our actual linguistic capac-
ities. Indeed, it sees any requirement of arbitrarily deep fractal structure
as implausible in view of our knowledge of the noisiness and impreci-
sion of actual neural activity.

The general hope, then, is that, just as careful placement of a limited
number of poles imparts an appropriate shape to a tent, so careful train-
ing on a judicious sampling of instances will effectively induce an ap-
propriate, albeit limited, nested structure on the space in internal
representations. Using a finite training set we cannot expect to induce a
genuinely Cantor Set-like structure with infinite layers of nested re-
gions, but our actual linguistic capacities do not demand such infinite
complexity, and the nature of the neural hardware available may even
rule it out. The hope that this kind of pragmatic approach might work
appears to be sustained when we examine the Elman models, for there
we do in fact find a limited-depth version of cascading hierarchical
structure. This entails limits on the ability of the network to handle cer-
tain kinds of intricate structures, but, interestingly, in at least some cases
those limits appear to roughly coincide with limitations of our own.

There is, however, a more exciting possible response, which is that
connectionist networks actually offer some quite special mechanisms
for (a) providing a genuinely Cantor-Set like space or arbitrary depth,
and (b) inducing the network which generates that space on the basis of
an appropriate selection of training instances. In other words, perhaps
it is not that fractal structures are something to be approximated by con-
nectionist networks, but, rather, that genuine, arbitrarily deep fractal
structures and corresponding dynamics will turn out to be a central fea-
ture of at least certain kinds of connectionist mechanisms (whether they
are now available or yet to be developed). Thus, Pollack, for one, has
claimed that 'It is my working hypothesis that alternative activation



188 Connectionism: Theory and Practice

functions (i.e., other than the usual sigmoidal or threshold), based on
fractal or chaotic mathematics, is the critical missing link between neu-
ral networks and infinite capacity systems' (Pollack 1989). Currently
this general approach lies squarely in the realm of speculation; like so
many other connectionist ideas, it is implemented only in neural
'hopeware.' I point to it here so as to acknowledge at least the possibility
of a genuine reconciliation of distinctively connectionist mechanisms
and productive linguistic capacities - a reconciliation that compromises
neither. And while this scenario might come across as somewhat far-
fetched, it is dangerous at such points to be too easily deterred by raw
intuitions. After all, the idea that finite connectionist mechanisms could
support a genuinely fractal space of mental representations is surely no
more intuitively implausible than the now generally accepted thesis
that there are certain machines which can mimic the operation of any
other machine.

An unexpected bonus of the general kind of understanding of neural
network approaches to language processing being endorsed here is that
we can see both the grain of truth in the common claim that connection-
ism is a reincarnation of associationism and why such a claim might be
less of an indictment than it is usually intended to be. 'Associationism'
has meant many things to many people, but one of the most fundamen-
tal characteristics of associationist approaches is the idea that the be-
haviour of the system recapitulates the regularities found in experience;
or that, put differently, the structure of the mind in a deep way amounts
to a reflection of the structure of the world as it has been so far encoun-
tered. This basic idea has been cashed out in many forms; thus, for the
British empiricist (or at least the cartoon version thereof) the order in
which ideas succeed each other in the mind is determined by the order
in which perceptions succeed each other in experience. In behaviourist
research of this century it meant that the patterns of behaviour a system
exhibits will, over time, come to reflect the connections between envi-
ronmental conditions, behaviours, and rewards, connections that are
themselves determined by the way the world is.

Now, much connectionist work is clearly associationist in this vague
and general sense. The immediate goal of Elman's SRN models, for ex-
ample, is to get the network to absorb the statistical regularities in the
training set, and successful performance for the network is even de-
fined as behaviour that is perfectly in accord with those regularities.
The model is behaving correctly if its prediction of the next word in the
sentence is in exact agreement with the statistics of the training set.

Nevertheless, connectionist approaches might turn out to be relative-
ly immune to some of the deep criticisms that have traditionally been
aimed at associationism. The standard attacks begin by taking the
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associationist position to be that the mind is a kind of recording device
for listing discrete associative links between the basic or 'atomic' ele-
ments of mental functioning (whether 'ideas/ or stimuli and rewarded
behaviours, etc.). Mental activity is then a matter of reproducing, in re-
sponse to input, stimulus, or even just the current state of the system,
the previously learned association. In more advanced versions of asso-
ciationist theory, basic associative links could of course be chained to-
gether or otherwise concretely combined to produce more complex
behaviours. Associationism of this form was claimed to be manifestly
unable to account for our actual behaviour, which simultaneously ex-
hibits flexibility, diversity and regularity. The basic difficulty can be
brought out by considering the general problem of producing appropri-
ate responses to novel situations. If the performance of an associative
system is limited to reproducing the links it has previously encoun-
tered, it would seem that the system cannot - almost by definition - pro-
duce an appropriate response to an unencountered input. The classic
example is our quite remarkable ability to respond in a sensible way to
a sentence we have never seen before. Associationists traditionally re-
sponded to this challenge by gesturing in the direction of the similarity
of the novel input to those previously experienced, but the measures of
similarity, and the mechanisms by which an appropriately 'similar' re-
sponse is produced, were ill-defined and implausible. The mind, it
seemed, has to do much more than simply list the associative links
found in previous experience. It has to recognize the basic associated
items as themselves having a systematic internal structure in terms of
which it can develop abstract rules for processing structures, rules
which, once formulated, apply equally well to the potentially infinite
range of novel situations. In short, the model of the mind as a mecha-
nism for listing and reproducing discrete associative links between
atomic elements had to be replaced with another model of the mind as
processing systematically structured entities according to general rules.

Now, an obvious virtue of connectionist networks is an ability to gen-
eralize appropriately to novel inputs, and so they at least seem to be
somehow overcoming, to some extent, this basic difficulty. It is impor-
tant to understand how they could do this while remaining true to their
associationist roots (i.e., without making the kind of fundamental archi-
tectural shift just mentioned). This is possible once we see connectionist
networks as dynamical systems operating in a state space in which in-
dividual states occupying particular points count as representations of
complex situations, and we see the representations in that space as fall-
ing into the kind of intricate cascading hierarchical structure described
above. It is from this perspective that we can begin to see the
connectionist middle road between a hopelessly simple-minded
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associationism on the one hand and a full-blown Chomskyan cognitiv-
ism on the other.

Sophisticated connectionist models overcome the limitations of the
simplest associationist models in at least two ways. First, as Elman has
stressed, their representations are structured, not only in the sense that
they manage to represent complex structured entities such as sentences,
but also because they themselves have an internal structure which de-
termines how they are handled in the system. This internal structure is
not, of course, syntactic structure (i.e., it is not the result of concatena-
tively combining primitive symbolic tokens according to grammatical
rules). This structure is a particular configuration of activation values,
which locates the representation in the state space and hence determines
how the system will treat it. In other words, the internal structure of
connectionist representations is significant not by virtue of instantiating
syntactic structure directly but, rather, in how it fixes the location of the
representation such that the system can treat it as encoding syntactic
structure. The systematicity of connectionist representations is to be
found in the wider structure of the space itself (i.e., in the dynamical
'shape' of the system which is instantiated by the network).4

Second, connectionist systems are not simply mechanisms for record-
ing a set of discrete associative links between elements. The training
process is, to be sure, one of getting the network to duplicate the specific
regularities presented in the training environment. It does this, howev-
er, only by constructing a particular dynamical system, whose behav-
iour is defined not only over the set of instances ('associations') to
which it has been exposed but rather over the full range of possible in-
put (or hidden) states. That is, a connectionist system which can gener-
ate an appropriate response to a certain fixed range of inputs is
automatically one that generates some response to the full range of pos-
sible inputs. It will generate the correct response to the full range of pos-
sible inputs if the training process succeeds in discovering a
distributing transformation from input to internal representations
which gives the space of internal representations the right kind of intri-
cate hierarchical structure.

This point comes out more clearly if we compare the connectionist
approach with the behavioural neuropsychology of the twenties and
thirties. Pavlov and others had developed the specifically associationist
hypothesis that all psychological activity is a matter of learned connec-
tions between stimuli and behaviour (i.e., conditioned reflexes) or
chains of such connections. Each reflex was thought to be implemented
via a proprietary 'engram' - that is, specific neural circuit travelling
'from sense organ to cerebral sensory area, thence through associative
areas to the motor cortex and by way of the pyramidal paths to the final
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motor cells of the medulla and cord.'5 The obvious task for neuropsy-
chologists was simply to locate the engram - that is, to find the specific
neural pathway for a given reflex. The assumption that all memory does
is to record discrete conditioned reflexes was built into the whole ap-
proach, and virtually guaranteed an inability to explain the flexibility
and diversity of behaviour. In the connectionist approach, by contrast,
the instances that form the training set simply act as reference points in
the process of constructing a dynamical system whose behavioural rep-
ertoire includes not only those reference points but also a vast range of
points in between. Moreover, there are no distinct neural encodings of
these initial points, for all associations the system performs are repre-
sented, in a thoroughly distributed fashion, in the one set of connection
weights. Distribution and flexible generalization are in this way two
sides of one coin.

In short, the internal representations used by more interesting kinds
of connectionist networks to perform their 'associations' are complexly
and systematically (though not syntactically) structured, and the asso-
ciative operations the network performs take this structure into ac-
count; moreover, connectionist learning is not simply the recording of
links found in prior experience but is essentially a matter of structure-
based generalization. In these two ways, connectionism, though in a
deep sense associationist, has resources enabling it to transcend the fa-
tal limitations of earlier, simpler varieties of associationism. Conse-
quently, when critics of connectionism claim that it is 'merely'
associationist and will fail for the same reasons traditional association-
ism failed, they demonstrate not any inherent limitations of connection-
ism but, rather, limitations on their own understanding of what
connectionism really amounts to.

My main concern in this commentary has been to emphasize the util-
ity of certain kinds of geometrical metaphor for understanding the na-
ture of connectionist representations. Combining, on the one hand, the
basic connectionist thesis that representations are points in the (finite-
dimensional) state space of a dynamical system on the one hand with,
on the other, the complex, multi-faceted and productive nature of our
linguistic capacities leads directly to the idea that mental representa-
tions must fall into the state space in some kind of regular, hierarchical-
ly organized structure of nested regions of differing functional
significances. The claim has been that fractal metaphors, such as the
Cantor Set and Pollack's 'devil's staircase/ are, at this stage, a natural
and revealing way to conceptualize this kind of structure. Note that
these metaphors, while playful, are not being advanced for their own
sake but, rather, as a direct response to the situation in which we find
ourselves if we accept certain very general basic commitments.
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This line of thought has a natural, though highly speculative, exten-
sion which deserves brief mention insofar as the enterprise here is to
make exploratory forays into strange new territory. It seems we are
committed to the presence of fractal structures within the state space of
neural networks, which are themselves dynamical systems. Together,
these suggest that the behaviour of the network may well turn out to be
chaotic in at least the following sense. An obvious property of the clas-
sical Cantor Set is that if one chooses any distance, no matter how small,
there will be an infinite number of distinct points in the set that are less
than that distance apart. We are, however, expecting the system to be
able to distinguish clusters at arbitrarily deep levels (indeed, in the con-
nectionist case the presence of clusters is only defined in terms of the
ability of the system to treat small regions in a differential fashion). Two
points in neighbouring clusters would, of course, have much in com-
mon, but they would also have differences in functional significance
that could eventually be very important for the future direction of pro-
cessing in the system. In short, these dynamical systems may well turn
out to exhibit a kind of 'sensitive dependence' on small variations in the
current state, which is one characteristic feature of chaotic dynamics.

In one sense this should not be at all surprising. Most connectionist
networks are, after all, rather complex nonlinear dynamical systems,
just the kind of environment in which chaotic behaviour tends to arise.
There is already ample research demonstrating that actual chaotic be-
haviour (strictly defined) crops up in a variety of ways in neural net-
work systems — in neurophysiological studies of brain activity, in
artificial neural networks considered solely as dynamical systems, and
even lurking suspiciously behind the scenes in applications of the back-
propagation training algorithm. The current line of thought tentatively
suggests that a form of chaotic behaviour may in fact turn out to have a
cognitive significance given the kinds of basic assumptions we have been
making about what information needs to be represented, the resources
available for representing it, and (what amounts to virtually the
same thing) the kinds of systems available for processing those
representations.

Note that I am not here advocating any role for chaos in connectionist
modelling; indeed, chaotic dynamics would seem to have some rather
obvious disadvantages. The idea that small differences in spatial loca-
tion of internal representations should make large differences to pro-
cessing is precisely what connectionist systems strive to avoid. The
whole idea is to develop a network whose internal representations are
such as to maximally facilitate further processing, and this means trying
to assign structures that should be processed in very different ways to
points as far apart as possible. Further, the random nature of chaotic
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behaviour conflicts directly with the idea that even small differences of
location are to make regular, systematic contributions to the direction of
processing. The hierarchically nested space of representations dis-
cussed above is supposed to be capturing the order and regularity in-
herent in linguistic systems rather than saddling us with irregularity
and unpredictability. My point is only that the current basic assump-
tions that are structuring connectionist investigations into language
processing are forcing the development of systems where chaotic be-
haviour might naturally be expected. If we wish to represent linguistic
structures as points in the state space of a complex nonlinear dynamical
system, and if we want the system to be able to handle arbitrarily many
such structures, then we must acknowledge that representations will
have to be packed into that space with vanishingly small distances be-
tween them. Since small differences between linguistic structures can
turn out to make large differences to, say, inferential significance, arbi-
trarily small variations in position in state space could direct processing
in the system in widely diverging directions. This alone is not constitu-
tive of chaos, but it is uncomfortably close.

On the other hand, there is a certain appeal in the notion that human
thought might be in some deep sense chaotic. It accords well with our
intuitive sense that thought processes are highly sensitive to extraordi-
narily subtle influences - that, for example, small changes in word or-
der, intonation, or pragmatic context can make great differences to the
responses that we will go on to regard as appropriate - and also with
the more controversial theoretical claim that no set of formal rules could
ever capture the fluidity, flexibility, and context-sensitivity of human
thought (see Dreyfus 1972). As connectionists and others have often re-
marked, these features of human cognition seem so elusive from the
strictly symbolic perspective, with its rigid representations and formal
rules, yet they could be built into the very nature of certain connection-
ist systems. More generally still, a consequence would be that the same
mathematical techniques that have been recognized as essential in de-
scribing so many other natural phenomena may describe the cognitive
domain as well. 'The place of mind in nature' might turn out to have a
mathematical answer framed in terms of sensitive dependence, bifurca-
tions, and strange attractors. At the very least, we can say this much: im-
porting this kind of framework at this stage is bound to have a
liberating effect through revealing the relative poverty of those stan-
dard perspectives in terms of which philosophers have expected to ex-
plain mind and its relation to the physical world.
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Notes

1 See, for example, Elman (1989) or Chapter 4 this volume.
2 For a depiction of these regions, see the cluster diagrams in Elman (this

volume).
3 For Pollack's own description of this mapping, and a diagram, see Pollack

(1989).
4 This perspective on the systematic encoding of syntactic structure in the

structured state space of a connectionist network is elaborated in van Gelder
(1990) and (forthcoming).

5 Lashley 1950: 455
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Structured Representations in

Connectionist Systems?
Terence Horgan and John Tienson1

Fodor and Pylyshyn (1988, henceforth F&P) argued that connectionism
must either be too weak to account for fundamental aspects of cognition
or it must be a mere implementation of the 'classical' picture of cogni-
tion. Cognition is systematic, they argued, and systematicity can only
be explained by syntactic structure. But if a connectionist system incor-
porates syntactically structured representations, they maintain, it will
be nothing more than a novel implementation of the classical picture of
cognition as rule governed symbol manipulation, in which case connec-
tionism will not be able to live up to its advance billing as an alternative
view of cognition.

Structure has become a hot topic in connectionism, perhaps in part
due to the prodding of F&P. Many recent papers purport to provide
counter examples to their charge. But, as we think will become clear,
none of them succeeds in avoiding the horns of the dilemma.3 What this
suggests is that the nature of F&P's charge against connectionism has
not been clearly understood, and, perhaps, that its seriousness has not
been appreciated.

We will try to make clear just what F&P's charge is and why and from
what point of view it is serious. This will entail making clear why syn-
tactic structure is needed (Section 2) and what is required to avoid the
charge of being 'mere implementation' of the classical picture of cogni-
tion (Section 3).

One connectionist who has attempted to respond to F&P's arguments
is Paul Smolensky (1987b, 1988b). Distributed representations, he ar-
gues, and, in particular, tensor product representations, allow connec-
tionism to escape its dilemma. Now Fodor and Brian McLaughlin (1990,
henceforth F&M) have replied to Smolensky. They say, 'tensor product
representations fail to explain systematicity because they fail to exhibit
the sort of constituents that can provide domains for structure sensitive
mental processes' (183).

195
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Tensor products and similar methods are the natural way of con-
structing representations in connectionist systems. So if F&M's claim is
correct, this would be very serious indeed. We will argue, however, that
they do not substantiate their claim (Section 4). On the other hand, it has
not been shown that this claim is incorrect. We will try to say what
would be a minimal system that would show that tensor products or
the like are capable of supporting the kind of structure-sensitive pro-
cessing that cognition requires (Section 5). This will make it clear, we
think, that the alleged counter examples to Fodor and Pylyshyn have
not demonstrated this kind of structure-sensitive processing.4

We will argue that, if, indeed, such structure sensitive processing is
possible in connectionist systems, then connectionists can successfully
explain why cognition is - and in complex cognizers must be - system-
atic (Section 6). And we will argue that a connectionism that incorpo-
rates effective syntax might very well embody a conception of cognition
that is fundamentally incompatible with the classical conception (Sec-
tion 7). Such a version of connectionism would escape F&P's dilemma,
for it would not be an implementation of classicism and yet would not
suffer the weaknesses and limitations of an approach that eschews syn-
tactically structured representations.

The FPM/Smolensky Debate

F&P introduced, and F&M reiterate, what has come to be known as the
systematicity argument. Cognitive systems are systematic in the sense
that cognitive capacities come in structured bundles. 'You don't find or-
ganisms that can learn to prefer the green triangle to the red square but
can't learn to prefer the red triangle to the green square. You don't find
organisms that can think the thought that the girl loves John but can't
think the thought that John loves the girl' (F&M 184). Thus, F&M
argue (185):

(S) It is nomologically necessary that cognitive capacities are gener-
ally systematic, both in humans and in many infrahuman organ-
isms.

Let us say that a cognitive system has effective syntax if it employs rep-
resentations (with language-like structure) that are processed in struc-
ture sensitive ways. F&P's overall argument against connectionism can
then be reformulated in the following way. Connectionism, as a puta-
tive new approach to the nature of cognition, is impaled on the horns of
a fatal dilemma. On the one hand, if it does not incorporate effective
syntax, then it will be inadequate because it will be incapable of
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explaining the systematicity of cognition; and it will be a version of as-
sociationism, with its well established inadequacies as a general ap-
proach to cognition. On the other hand, if it does incorporate effective
syntax, then it will be a mere implementation of the classical conception
of cognition, that is, cognition as rule-governed symbol manipulation;
it will not be a new cognitive-level approach at all.

Smolensky accepts (S), but he claims that the F&P dilemma is false;
there is a middle ground between inadequate associationism and mere
implementation of classicism. And he has suggested that this middle
ground is likely to involve representations of a certain sort - viz. tensor
products - whose encoding of syntactic structure is distributed
throughout the representation. Tensor product representation 'provides
a formalization that is natural for connectionist computation of the non-
formal notion of constituent structure, and is a likely candidate to play
a role in connectionist cognitive science analogous to that played by
constituent structure trees in symbolic cognitive science' (Smolensky
1987b, 156f). Others have recently produced similar arguments and
have proposed alternative ways of introducing rich structure into dis-
tributed connectionist representations (Pollack 1988,1989, forthcoming;
Hinton 1988).

F&M reply that constituents of this sort cannot play the causal role re-
quired of them. They 'stipulate that, for a pair of expression types El,
E2, the first is a Classical constituent of the second only if the first is to-
kened whenever the second is tokened' (186). The obvious examples are
constituents that are (spatially or temporally) contained in the represen-
tation of which they are constituents (although, as F&M remark in a
footnote, the definition does not imply that expressions necessarily con-
tain their classical constituents).

Constituent structure as formalized by tensor products is not classical
in F&M's sense. Tokening a tensor product representation does not re-
quire tokening its constituents: this is the heart of F&M's reply to Smo-
lensky.' We shall see presently that what Smolensky offers as the
"constituents" of connectionist mental representations are non-Classi-
cal ... and that is why his theory provides no account of systematicity'
(F&M 187). Thus F&M assume that to play an appropriate role in a cog-
nitive system, constituents must be classical. Non-classical constituents
cannot be causally efficacious, because they are not there in the system.
Accordingly, F&M maintain, a connectiorusm that incorporated only
non-classical constituents would have no apparent prospect of over-
coming the first horn of the original dilemma. It would have no appar-
ent way of explaining systematicity and (we take it) no way to
overcome the limitations of mere associationism. (We will argue in Sec-
tion 4 that this contention is quite dubious, and that there are some
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reasons for believing that Smolensky's tensor products or something
like them have the potential to provide effective syntax despite their
lack of classical constituents.)

We agree with Smolensky that the Fodor/Pylyshyn dilemma is false.
We believea, however, that the area of logical space that Fodor and Pyly-
shyn have missed has to do more with mental processes than with men-
tal representations.5 But non-classical representations are natural in
connectionism, and they are, we believe, the most promising way to re-
alize non-classical mental processes. Therefore, the issue of whether
there can be effective syntax based on non-classical constituents is quite
important for connectionism.

The Need for Syntactic Structure

As Fodor et al. repeatedly emphasize, the classical picture is ideally
suited to explain systernaticity. The classical picture holds that cogni-
tion is symbol manipulation governed by rules which advert to the syn-
tactic structure of the symbols. Classical representations necessarily
have syntactic structure; they are made up of repeatable items of fixed
syntactic types. So, for example, if a classical system contains a repre-
sentation aRb, and a and b are of the same syntactic type, then that sys-
tem is, by its very nature, capable of containing the representation bRa.

Syntactic structure explains systernaticity. It seems plausible to us
that no other explanation is possible for cognitive systems of any com-
plexity. There is a vast number of potential, systematically related, cog-
nitive states. There are on the order of 1020 English sentences of twenty
words or less. For most of these there is a potential corresponding
thought, and potential thoughts far outstrip sentences because of our
ability to make relevant discriminations for which we lack linguistic re-
sources. How could one explain the capacity to have so many system-
atically related thoughts except by the capacity to build them by
repeatable components? One might, perhaps, provide ad hoc for syste-
maticity in a simple system by wiring in all the potentially necessary
states, but this is not possible for the complex cognitive systems we ac-
tually find in nature.

We agree with the conclusion that syntax is necessary, but we think
there are somewhat more revealing arguments for this conclusion. We
have argued elsewhere that cognitive systems require constituent struc-
tured representations to get on in the world (Horgan and Tienson 1987,
1988,1989, forthcoming). Basketball is our favourite example of cogni-
tive systems getting on in the world, because it presents such a range of
features within such a small compass. But all of the features found in
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this example are common to the normal activities of the cognitive
systems that we know and love.

To make a long and, we think, enjoyable story short, hundreds of
times in the course of a basketball game a player is faced with a decision
that must be made very rapidly: to pass or shoot on a fast break, to pass
into the post or not, etc. Some of these decision situations are very com-
plex; there may be several different teammates the player could pass to
as well as several different things the player could choose to do with the
ball himself. And, of course, the players without the ball make such de-
cisions as well.

These decisions, obviously, are made in light of a certain goal - win-
ning the game, which does not always mean scoring a basket as soon as
possible. Various things have to be taken into account in coming to a de-
cision: the position of the goal, the player's own position and motion
relative to the goal, the position and motion of each of his teammates,
and the position and potential activity of five aggressive, mobile obsta-
cles - and not just their positions at the moment of decision or at the mo-
ment of release of the ball, but their predicted positions at the time the
ball arrives at various points and for some time thereafter. So what is
taken into account is the future positions of teammates and the posi-
tions and possible responses of opponents.

Thus the player must not only have a representation of the evolving
scene, but various properties of the people in the scene have to be taken
into account. These come in at least three general types. First, there are
the basic properties that structure the game: who is in the game, and, of
these, who is a teammate and who is an opponent. Second, at sophisti-
cated levels of play it is imperative to take into account the specific skills
of individual players: the height, jumping ability, and speed of each,
their shooting ability, who has good hands, and so forth. These are rel-
atively enduring properties of individuals. Third, more transient prop-
erties also must be taken into account: who is shooting well, who is
having a good game and who is not, who is in foul trouble, who is
guarding whom, and what position each player is playing

The upshot of these observations is that much of the information that
goes into court decisions is of a sort that normally would be thought of
as propositional. This information comes in repeatable chunks, and re-
peatable properties are attributed to different enduring individuals of
different types. That it is the same individual or attribute makes a dif-
ference for what is to be done. And, therefore, something within the
cognitive system must encode these identities. For a system of any size
and complexity - and for real cognitive systems there is a vast number
of identities of reference and predication to attend to - we see no way
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to do this unless identity of reference and of predication is recoverable
from the representations themselves.

This means, roughly, that there must be representations that contain
repeatable predicates applied to repeatable subjects, so that the relevant
relations of co-reference and co-predication can get encoded and thus
can get accommodated during processing. More precisely, it means that
complex representations must be functions of representations of small-
er chunks of content. That is, constituency relations - subject of, modi-
fier of, etc. - must be definable for the system in appropriate
mathematical or physical terms, so that they play a role in the process-
ing of the system.6 That is, real cognitive systems need effective syntax.

We call this the 'tracking' argument, because a fundamental part of
the cognitive task that it refers to is keeping track of enduring but mov-
ing and changing individuals. As Fodor et al. insist, syntax explains sys-
tematicity. The tracking argument, however, is more basic. The
systematicity argument says: Cognitive systems are observed to be sys-
tematic; the best explanation of this observed systematicity is effective
syntax. We argue: To be a cognitive system beyond the most rudimen-
tary, a system must have effective syntactic structure; effective syntactic
structure implies systematicity; therefore, cognitive systems beyond the
most rudimentary will exhibit systematicity.

Thus, as far as we can see, cognitive systems must have syntactic
structure in the sense that cognitive states, beliefs, desires, etc. must be
constructed in a systematic way from repeatable elements. Fodor and
Pylyshyn assume that having effective syntactic structure makes a sys-
tem classical. The burden of their argument against connectionism is
that cognition requires effective syntactic structure. They take for grant-
ed that having established this they have refuted connectionism: 'if you
need structure in mental representations anyway to account for the pro-
ductivity and systematicity of minds, why not postulate mental pro-
cesses that are structure sensitive to account for the coherence of mental
processes? Why not be a Classicist, in short.' (F&P 67)?

However, neither the tracking argument nor the systematicity argu-
ment directly implies the need for classical syntax.7 Nor, as we will ex-
plain shortly, do they imply that cognitive processes must conform to
programmable representation level rules, as classicism requires. Postu-
lating structure sensitive mental processes is not equivalent to being a
classicist. What these arguments imply is that there must be a notion of
constituency for a cognitive system according to which constituents
play a causal role qua constituents. It may be that, as a matter of fact or
law, the only way this is possible is for the constituents to be classical
constituents. But that is a further question.
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Thus, two closely related questions have emerged. Can there be a real
connectionism - a genuine alternative to, and not merely an implemen-
tation of, classicism - that has effective syntax? And since classical
constituents are not the natural way for connectionist systems, can you
have effective syntax with non-classical constituents? One step in be-
coming clearer about these questions is to understand what it means to
say that connectionism might constitute 'mere implementation' of the
classical picture.

Mere Implementation

The classical AI conception of mentality, often dubbed the rules and
representations conception (for short, the RR conception), asserts that
cognition is a species of rule-governed symbol manipulation. Classi-
cism makes three fundamental claims: First, human cognition employs
structurally complex mental representations, many of which encode
propositional information via language-like syntactic structure; second,
cognitive processing is suitably sensitive to the structure of these com-
plex representations and, thereby, is suitably sensitive to their content;
third, cognitive processing conforms to programmable rules, statable
over the representations themselves, that advert solely to the form
or structure of the representations (rather than adverting to their
content).8

It should be stressed that the third claim does not assert that the rules
of cognitive processing must be represented by the cognitive system it-
self. Although rules, or sets of rules, are sometimes explicitly represent-
ed in classical systems as stored data structures, they need not be.
Rather, a classical system can conform with representation-level rules
simply because it is hard wired to do so. (Every classical system will be
hard wired to obey some such rules - for instance, rules whereby it
'reads' and executes any explicitly represented rules it might contain.
And some special-purpose classical systems do not represent any of the
rules to which they conform.)

In classical AI, and in standard computers, language-like symbolic
representations have 'classical constituents' in F&M's sense: Whenever
a syntactically structured representation is tokened in a classical sys-
tem, its constituents are also tokened. But this is best regarded, we sug-
gest, as a de facto feature of classicism - not as one of its essential or
defining features. What is essential is structure sensitive processing that
is describable by programmable rules adverting to that structure.

Connectionism has been explicitly touted as a putative alternative
to the classical conception of cognition. Unfortunately, it is far from
clear what exactly the connectionist alternative to the RR view is
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supposed to be. This much does seem clear, however; insofar as
connectionist systems engage in rule-governed manipulation of sym-
bolic representations with classical constituents, these systems do not
serve as a basis for an alternative conception of cognition. Hence the
importance of the second horn of the FP dilemma: the threat of 'mere
implementation.'

One thing often said in favour of connectionism is that connectionist
networks are more brain-like than are von Neumann machines. Nodes
are (somewhat) like neurons, and a structure consisting of many inter-
connected simple processors is more like the structure of the brain than
is that of a conventional computer. But if one is looking for a new con-
ception of cognition, rather than merely for a new way of implementing
the classical RR conception, it is not clear that these brain-like features
matter. When a classical computer is engaged in rule governed symbol
manipulation (say, running a LISP program), it does so by performing
mathematical computations that are causally but not conceptually relat-
ed to its data processing. And it does this number crunching by trans-
mitting electrical impulses. But these 'lower level' descriptions are not
relevant to the cognitive level description of what is going on in the sys-
tem. The numerical computations and electrical impulses constitute an
implementation of the program - one possible implementation among
many. For the same reason, if the brain-like features of connectionism -
the individual nodes and their interactions — are far enough removed
from the cognitive level, they might not figure in a cognitive level ac-
count of mental processing at all.

In some simple connectionist models, single nodes and single inter-
node connection strengths are assigned their own representational con-
tents. These tinker-toy models thereby avoid the 'mere implementation'
charge but only at the price of falling prey to the other horn of the FP
dilemma: they process representations in a purely associative way. Giv-
en the need for effective syntax in cognition, it seems likely that connec-
tionist systems that deserve to be taken seriously as psychological
models will have representations that are fully and broadly distributed
over many nodes. No single node will represent anything by itself, just
as there is no grandmother neuron or yellow Volkswagen neuron. But
if all representations are distributed, then the nodes and their interac-
tion are no more part of the cognitive level story than is the circuit dia-
gram of a VAX part of the classical story about cognition. At least, so it
would seem. It thus becomes very difficult to find anything in the con-
nectionist literature that would count as an articulated connectionist
conception of cognition.9 And, to the extent that connectionism aspires
to provide a new and different general conception of cognition, the
mere implementation charge is very serious indeed.
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A genuine alternative connectionist conception of cognition would
have to do two things in order to avoid both associationism and mere
implementation. On the one hand, it would have to include
syntactically structured representations and structure sensitive process-
ing, since these are required by cognition. On the other hand, it would
have to eschew some central tenet or tenets of classicism. Thus, a viable
cognitive connectionism would have to differ from the classical RR con-
ception either about cognitive-level aspects of syntactically structured
representations, about cognitive-level aspects of mental activity, or
about both. That is, it must countenance either non-classical constitu-
ents, non-classical cognitive processing, or both.

There are a number of recent connectionist proposals for incorporat-
ing rich structure into connectionist representations, largely with an eye
towards introducing effective syntax. Smolensky's tensor product rep-
resentations are one notable example, but related approaches are being
explored by other connectionists (Pollack 1988,1989, forthcoming; Hin-
ton 1988; Dyer in press). Each of these schemes involves, in one way or
another, a notion of syntactic constituency that is non-classical. (We will
discuss Smolensky's proposal, and F&M's skepticism about it, in sec-
tions 4 and 5.)

The other way to avoid implementing the classical RR conception
of cognition is to eschew the kind of processing that is posited by clas-
sicism: viz., processing that conforms to programmable representation-
level rules. That is, one might seek to develop a version of cognitive
connectionism that repudiates the 'rules' component of the classicist
package deal while still retaining representations with effective syntax.
This general view of cognition we call 'representations without rules'
(for short, RWR). Elsewhere we have argued that RR cognitive science
is in Kuhnian crisis; that the root source of the crisis problems is classi-
cism's methodological commitment to programmable representation-
level rules; that the nature of these problems provides substantial evi-
dence that human cognition does not conform to such rules; and that in
light of this conclusion, plus the tracking argument, human cognition
very likely conforms to the RWR conception (Horgan and Tienson 1987,
1989,1990, forthcoming).

We maintain that connectionism ought to be striving to develop into
an RWR paradigm, and that various features of connectionism make it
look promising in this regard. Repudiating programmable representa-
tion-level rules does not mean claiming that cognition is anarchy, or that
cognitive science is impossible. For it is likely that there are numerous
true cognitive-level generalizations of a kind we call 'soft laws' - i.e.,
laws containing ineliminable ceteris paribus clauses adverting to an es-
sentially unlimited range of potential same-level exceptions (exceptions
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statable in the language of psychology). Soft laws can be the basis of
perfectly good psychological explanations and theories.10All this, too,
we have argued elsewhere (see, especially, Horgan and Tienson 1990).

Given that non-classical syntax and non-classical processing are two
avenues by which connectionists might seek to avoid merely imple-
menting classical cognitive architecture, three potential non-implemen-
tational versions of cognitive connectionism can now be distinguished.
Each would posit representations with effective syntax and would also
assert at least one of the following claims:

(i) Cognitive representations with effective syntax have non-
classical constituents.

(ii) Structure sensitive processing of syntactically complex repre-
sentations does not conform to programmable representation
level rules.

Type 1 connectionism would assert (i) but would retain the classicist as-
sumption that cognitive processing is rule-describable at the represen-
tational level. Type 2 would assert (ii) but would retain the classicist
assumption that the constituents of a syntactically complex representa-
tion must be tokened whenever the representation itself is tokened.
Type 3 would assert both (i) and (ii) thereby, and repudiate both classi-
cal constituents and classical processing.

For reasons to be discussed below, the natural way to introduce
structure into connectionist representations is with non-classical con-
stituents. Suppose it should turn out that such representations are in-
deed susceptible to suitably structure-sensitive processing within
connectionist systems, but that this processing conforms to program-
mable representation-level rules. That is, suppose we were to obtain a
viable form of type 1 connectionism. This would, in a sense, avoid the
charge that connectionism is no more than mere implementation of
classical cognitive architecture, because classicists have traditionally as-
sumed that effective syntax requires classical constituents. But in a
deeper sense, it would not. For, as we remarked above, the commitment
to classical syntax is not really an essential, or definitive, tenet of classi-
cism. Rather, its essential tenets are the three we mentioned in the first
paragraph of this section: syntactic structure, structure sensitive pro-
cessing, and hard representation-level rules. But if human cognition re-
ally conforms to representation-level rules that advert to the purely
formal or syntactic features of mental representations, then such pro-
cessing can be carried out by means of traditional rule-governed sym-
bol manipulation where the symbolic representations have classical
constituents. Perhaps certain such rules would 'run' more easily - more
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quickly, say, or with fewer computational resources - on a connectionist
network employing symbols that lack classical constituents. But these
would be only implementational differences. So type 1 connectionism
would really give us an implementation of classical cognitive architec-
ture after all - if you like, a non-canonical implementation, involving
non-classical syntactic constituents.

Admittedly, type 1 connectionism still could be extremely interest-
ing and important. For one thing, the question of how cognition is im-
plemented in humans is itself very important, even though it may not
fall within the domain of cognitive psychology per se. Furthermore, an
approach to cognition that emphasizes non-classical syntactic constitu-
ency and connectionist implementation might well lead to new cogni-
tive-level rules of symbol manipulation. (Maybe certain rules are
naturally and easily implemented connectionistically but are awkward
to implement traditionally.) But these kinds of contributions, valuable
though they might be, would really constitute new twists in the RR par-
adigm - they would not provide a fundamentally novel conception of
cognition itself.

The real heart of the implementation issue, then, is the question as
to whether cognitive processing conforms to programmable represen-
tation-level rules. The notion of implementation really only makes liter-
al sense insofar as such rules are involved; for what gets 'implemented,'
strictly speaking, is rule-conforming symbol processing. (For instance,
processing conforming to the rules of LISP gets implemented in a stan-
dard computer via isomorphic numerical processing, which, in rum,
gets implemented via isomorphic casual processes in the machine's
electrical circuitry.) Type 1 connectionism would still be a way of imple-
menting rules. But type 2 and type 3 cognitive connectionism would re-
pudiate the classicist assumption that cognitive processing is
describable, at the representational level, by programmable rules. So ei-
ther of these versions of cognitive connectionism would be genuinely,
deeply non-implementational.

As we said, we think there is good evidence that human cognition
falls within the RWR region of logical space - not the RR region. This
leaves open, however, whether or not a connectionist version of RWR
can be developed; that remains to be seen. But given the evidence for
RWR, and given the naturalness of non-classical constituency for con-
nectionist representations, we suggest that the proper goal for connec-
tionism should be developing a type 3 connectionist account of
cognition. Successfully accomplishing this goal would certainly steer a
safe course between the Scylla of associationism and the Charybdis of
merely implementing the classical approach. Indeed, it would trans-
form the current Kuhnian crisis into a scientific revolution.
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Non-classical Constituents and Effective Syntax

In this section and the next we take up the question of whether non-
classical syntax, of the kind proposed by Smolensky and others, can be
effective syntax. We take this to be an open question; the answer is not
known, and currently there is no strong or clear-cut epistemic presump-
tion one way or the other. In the present section we will explain tensor
product representations and what they do in enough detail to discuss
the issues. We will also argue that many physical systems behave in a
way that Fodor and McLaughlin appear to assume to be impossible,
and, hence, that F&M are unconvincing in their attempt to argue that
non-classical syntax cannot be effective. In the next section we consider
what would be a minimum that would demonstrate non-classical effec-
tive syntax, and we discuss some considerations Smolensky offers for
thinking that tensor product representations can deliver the goods. We
repeat, however, that as far as the issue of 'mere implementation' is con-
cerned, the question about the effectiveness of non-classical syntax is
not fundamental - the fundamental question is whether processing
conforms to programmable representation-level rules.

Within connectionism, representations are most naturally conceived
as vectors. A tokened representation is a pattern of activation in certain
nodes, with each node corresponding to a dimension of the vector and
with that node's activation level being the numerical value of the corre-
sponding dimension. So if one seeks to incorporate rich structure - in-
cluding syntactic structure - into connectionist representation, then a
natural approach is to construe the pre-theoretic notion of constituency
in terms of some suitable relation, or relations, among vectors. Struc-
tured representations will be vectors that bear such relations to other
vectorial representations.

In the first generation of connectionist models, this idea was pursued
only rather crudely, if at all. Sometimes representation was completely
local: single units were assigned fixed representational content, so that
a given representation was tokened whenever its unit had above-
threshold activity. Purely local representations are structurally atomic
and, thus, lack representation-level constituents altogether. Sometimes,
on the other hand, representation was modestly distributed: an entity
was represented by a collection of active units, with each active unit in
the collection locally representing some 'microfeature' instantiated by
the represented entity. This approach does introduce a crude form of
constituency, viz., the relation between a multiple-element vector and
its various separate elements. But all this amounts to at the cognitive
level is set theoretic membership or the part/whole relationship, not
syntactic structure. Suppose, for instance, that three single nodes in a
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network, respectively, represent John, loving, and Mary. The simulta-
neous activation of these three nodes clearly will not do as a putative
representation of the proposition that John loves Mary, for how, then,
would the system represent the proposition that Mary loves John? Ways
are needed to build richer kinds of constituency into vectorial represen-
tations - rich enough to accommodate syntactic constituency relations
like subject-of, predicate-of, and the like.

In the current second generation of connectionist modelling and the-
orizing, the problem of structure is being approached in a more sophis-
ticated way. This new attention to structure is motivated largely by an
increasing appreciation of the need for language-like representation
and for suitably structure sensitive processing. Particularly noteworthy
are Smolensky's tensor product representations (henceforth, TP repre-
sentations), Hinton's reduced descriptions, and Pollock's recursive dis-
tributed representations.11 We will focus here on Smolensky, since his
proposal is the specific target of F&M's discussion. But much of what
we say is applicable, mutatis mutandis, to proposals like Hinton's and
Pollock's.

Smolensky harnesses two mathematical operations on vectors: addi-
tion and tensor multiplication. For any two n-element vectors, v and w,
their sum (v + w ) is the n -element vector whose elements are the sum
of the first element of v and the first element of w, the sum of the second
elements of v and w, etc. For any n -element vector v and m - element
vector w, their tensor product, v x w, is an (n x m)-element vector that is
obtained by pairwise multiplication of each element of v with each ele-
ment of w.

TP representations are characterized as follows: Suppose that F is a
set of n-element vectors, each assigned to represent a 'filler' that can oc-
cupy various roles; and suppose that R is a set of m-element vectors,
each assigned to represent a role that can be occupied by various fillers.
If this is the case, then for any two vectors f and r (from F and R, respec-
tively) the tensor product of f and r (i.e., the (n x m)-element vector f x
r) represents a 'filler/role binding' (i.e., it is a representation of a partic-
ular filler occupying a particular role). So, for example, if v(John) is a
vector representing the noun 'John,' and v(subj) is a vector representing
the grammatical role, subject, then the tensor product v(John) x v(subj)
is a vector that represents 'John' in the role of subject.

A TP representation of a structured object is the vector that results
from adding together the vectors that represent the filler/role bindings
for each of the constituents of the object. A TP representation of the sen-
tence 'John loves Mary' might be the result of adding the vectors repre-
senting 'John' in the role of subject, 'loves' in the role of 'verb', and
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'Mary' as object. That is, [v(John) x v(subj)] + [v(loves) x v(verb)] +
[v(Mary) x v(obj)].

This treatment of the sentence 'John loves Mary' is obviously unreal-
istically simple-minded as a general approach to sentence structure,
and is meant only for illustration. For one thing, the sentence would
standardly be thought of as having a (tree) structure that combines
'John' with the verb phrase 'loves Mary', which, in turn, has constitu-
ents 'loves' and 'Mary.' Thus, a more realistic TP representation would
be the vector that results from adding vectors representing 'John' in the
role of subject and 'loves Mary' in the role of predicate. This latter vector
would be constructed from TP vectors representing 'loves' in the role,
say, 'head of verb phrase' and 'Mary' in the role 'object of verb
phrase.'12

This illustrates one of the mathematical features of tensor products
that makes them well suited for connectionist representation; they are
recursive. Being vectors themselves, tensor product representations can
serve as filler or role representations for higher-order tensor product
representations.

Another important mathematical feature of tensor product represen-
tations is recoverability. When the filler representations are linearly in-
dependent of one another, and likewise the role representations, they
are fully recoverable mathematically from the TP representation (i.e, the
vector sum of the individual TP role/filler vectors). When the vectors
are not linearly independent, a degree of recoverability may remain. In
general, the greater the deviation from complete linear independence
among filler representations or role representations, the less accurate
will be the mathematical recoverability of the constituent filler- and
role-representations.

TP representation can be implemented very naturally in a connec-
tionist network. An n-element vector is represented by a pattern of ac-
tivity, corresponding to the values of the elements of the vector, in a
pool of n nodes, (n x m)-element tensor products can be implemented
by an (n x m)- sized pool of 'binding units', each capable of a continuous
range of activation levels. Vector addition is implemented via superpo-
sition of one distributed TP representation 'on top of another, sum-
ming activity in the units. Thus, when a particular TP representation is
being tokened, the activation of each binding unit is typically the result
of summing activation from several different, superimposed filler/role
binding representations. Conversely, the level of activation of a node
contributes to the representation of each of these filler/role binding rep-
resentations. There is, in general, no single representation that a unit's
level of activation contributes to.
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Figure 6.1: A network using multiplicative junctions to perform tensor product binding
(From Smolensky 1990,194).

Separate n-element and m-element pools can implement filler and
role representations, respectively. These pools can be linked to a pool of
(n x m) binding units, as in Figure 6.1.

Each binding unit is connected, via a multiplicative junction (which
yields the product of two inputs), to a single filler unit and a single role
unit. If a particular filler representation f and role representation r are
simultaneously activated in the filler and role units, activation is passed
from both pools to the binding units, and the multiplicative junctions
generate the representation f x r in the binding units. Superposition can
be accomplished by activating additional filler/role combinations,
while a current representation remains active in the binding units.

Such a network can also 'unbind' a TP representation to recover its
constituent filler or role representations. When a TP representation is
actively present in the binding units, a pattern of activity in the role
units corresponding to a specific role representation can function essen-
tially as a 'query', asking which filler (if any) occupies that role. Activity
from the binding units and the role units will generate in the filler units
a pattern of activity corresponding to the appropriate filler representa-
tion, thereby 'unbinding' the answer to the query. Thus, a network in
which the sentence 'John loves Mary' was represented would be asked
'What is the subject?' by producing a pattern of activation in the role
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units corresponding to the vector representation of the role subject. And
we would get a pattern of activity in the filler units corresponding to the
vector representation of 'John.'

We have talked of tensor product representations of sentences, in part
because this is the familiar way of speaking. In certain cases, it is appro-
priate to speak of the tensor product as representing a sentence (e.g.,
when the network does language processing). But the designation 'ten-
sor product representation' means that the tensor product represents.
Typically, what the network represents is not language but some other
domain. In these cases, it is more appropriate to think of the tensor
product representation not as representing a sentence but as being a sen-
tence - a syntactically structured representation - (tokened) in the bind-
ing units. Thus, what is (tokened or realized) in the network is not a
representation of the sentence 'John loves Mary' but, rather, the sentence
'John loves Mary', which is (roughly) a representation of a certain non-
linguistic state of affairs. TP 'representations', when tokened in suitable
connectionist networks, should be thought of as sententially structured
representations - sentences written in the (non-classical) language of
the network.13

Tokening a TP representation does not, in general, require tokening
its syntactic constituents. Thus, the syntactic constituents of TP repre-
sentations are non-classical in F&M's sense. It is here that the issue of
effective syntax is joined. F&M put their complaint against Smolensky
this way:

We can now say quite succinctly what our claim against Smolensky will be:
on the one hand, the cognitive architecture he endorses does not provide for
representations with Classical constituents; on the other hand, he provides no
suggestion as to how mental processes could be structure sensitive unless
mental representations have Classical constituents; and, on the third hand (as
it were) he provides no suggestion as to how minds could be systematic if
mental processes aren't structure sensitive. So his reply to Fodor and Pyly-
shyn fails. (188)

Suppressing epistemic operators, the argument against Smolensky
becomes,

(1) No classical constituents.
(2) If no classical constituents, then not structure sensitive.
(3) If not structure sensitive, then not systematic.

We agree with the first point. Constituent structure defined in terms
of tensor products is not classical, and connectionist representations
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should not, in general, be classical. We agree in spirit with the third
point. Only simple systems could be (artificially or accidentally) sys-
tematic without being structure sensitive.

Initially, claim (2) does look quite plausible. Godel numbers, for exam-
ple, look like prime examples of representations without classical con-
stituents. A unique Godel number can be assigned to each syntactic
primitive of a language, to each well formed formula and subformula,
and to each sentence in such a way that an algorithm can reconstruct
any sentence from its associated Godel number and vice versa. So per-
haps one might say that the (non-classical) 'constituents' of a Godel
number g would be the Godel numbers of the classical constituents of
the sentence numbered by g. But it seems overwhelmingly unlikely that
numbers that are constituents in this sense could play a causal role in
structure sensitive processing. If they could play a role at all, it would
only be of a Pickwickian sort, involving first reconstructing classical
sentential representations, performing structure sensitive operations on
those classical representations, and then reconverting the resulting sen-
tential representation back into Godel numbers.

Although TP representations are like Godel numbers in lacking clas-
sical constituents, it does not follow that they are relevantly like Godel
numbers when it comes to susceptibility to structure sensitive process-
ing. It is not the case that all representations are either unstructured in
the way Godel numbers are, or that they possess classical constituents.
There is a range of cases in between.

Consider, for example, a magnetic recording tape on which is monau-
rally recorded a performance of a string quartet. The tokened represen-
tation on the tape is the physical superposition of the four
representations which would have been tokened had just one of the
four instruments played its same sound in the absence of the other
three. None of these individual lines is tokened on the tape. However,
in a natural sense, each of these four non-tokened sound representa-
tions is a constituent of the actual tokened representation on the tape.14

And these non-tokened, non-classical constituents are amenable to a
form of constituent sensitive processing. In an appropriate sound repro-
duction system, they can produce sounds very much like those that
were originally caused by the four separate instruments. And these
sounds can be discerned as distinct, for example, by the human ear.

The sound recording example is, in a sense, parasitic upon the case of
real sound. Sound waves - like all waves - superimpose, and yet com-
ponent waves have effects as individual waves. The sound waves in a
crowded room, for example, consist of the superposition of sounds pro-
duced by many voices, yet bits of individual conversations are
discernible.
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Wave phenomena are ubiquitous in nature, effects of non-tokened
constituent waves equally ubiquitous. The wake of a boat has many ef-
fects, setting a buoy to bobbing in a certain way, knocking down a skier,
and contributing to the destruction of a sand castle. But the waves in
that wake exist on open water as nothing more than their contribution
to the complex contortion of the surface that is the superposition of
many different wave motions, including the dominant motion caused
by the wind.

Holograms are a widely discussed wave phenomenon, and they offer
a somewhat different example of structure sensitive processing. No sep-
arate part of a hologram represents any separate part of the scene it rep-
resents. Information about the scene is present in a fully distributed
form. Nevertheless, shining a light through any large enough portion of
a hologram generates a three dimensional image of the whole original
scene. This effect is sensitive to the hologram's structure qua recorder of
visual information, even though the encoding is distributed.

Our colleague Don Franceschetti has suggested to us a particularly
clean example of the causal efficacy of component waves of a wave su-
perposition. Suppose a square drumhead is struck simultaneously on
two adjacent sides. The wave resulting from each blow will travel
across the drumhead, so to speak, to strike the other side of the drum
and there have the effect it would have had if the other blow had not
been struck. Suppose that a toy soldier balanced on one side of the
drum is knocked off by the wave emanating from the blow to the oppo-
site side. The motion of the drumhead in the interval will be nothing
more than the superposition of the two waves started at the two
adjacent sides. The wave that caused the soldier's fall was not
classically present.

This is just the sort of thing one wants to say about tensor product
representations. The representation of John as subject of the sentence is,
and is no more than, its contribution to the superposition representing
the sentence as a whole.15 The analogy with wave phenomena shows
that such contributors to superpositions are not necessarily causally in-
ert, as F&M's argument appears to assume.

There is a whole spectrum of possibilities concerning structure sensi-
tive processing. At one end of the spectrum are sentential representa-
tions with classical constituents. At the other end are representations
like Godel numbers, which very probably cannot directly subserve ef-
fective syntax at all. Tensor product representations, like the wave phe-
nomena from which they are abstracted, lie somewhere in between.
Unlike Godel numbers, they contain intrinsic information about con-
stituency. Unlike classical representations, this information is present in
distributed, not local, form.
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Since sentential TP representations do contain structurally encoded
information about their syntactic constituents, it is entirely possible that
their structure renders them amenable to processing that is suitably sen-
sitive to these constituents. Sound waves and light waves can have con-
stituent- sensitive effects, even though their constituent waves are not
tokened with them. Our point against F&M is that they are wrong to
treat (2) as possessing overwhelmingly strong credibility. TP represen-
tations might, similarly, be capable of appropriate constituent-sensitive
effects, even when their syntactic constituents are not tokened. If so,
then the non-classical syntax of TP representations would qualify as
effective syntax.

Can Tensor Products Provide Effective Syntax

In this section, we consider what it would take, at a minimum, to show
that non-classical constituents could support the kind of constituent
sensitive processing that cognition requires.16 The first thing we want to
observe about tensor product representations is that they do provide
naturally for a certain amount of systematicity. Let us distinguish in the
obvious way between representational systematicity and inferential (or,
more generally, processing) systematicity. A system exhibits representa-
tional systematicity if and only if it is capable of having a representation
only if it is capable of having other relevantly related representations. A
system is inferentially systematic if and only if it is capable of making
an inference only if it is capable of making other inferences of the
same form.

Tensor product representations certainly do provide for representa-
tional systematicity. A tensor product representation of a sentence re-
sults from taking the tensor product of a vector representing a syntactic
role by a vector representing the filler occupying that role and then su-
perimposing those tensor products for each constituent of the sentence.
Let (a) and (b) be representations of the same type, and let (r) be a role
that representations of that type can occupy. Let Va, Vb, and Vr be vec-
tor representations of (a), (b), and (r), respectively. If tensor product Vb
x Vr is a representation of (b) in role (r) in a certain system, then Va x Vr
will be a tensor product representation of (a) in role (r) in that system.
In general, given vector representations of distinct roles and of fillers of
types that can occupy the various roles, if one filler of a given type can
occupy a role, then any filler of that type can occupy that role. And that
is representational systematicity. Thus, tensor products naturally and au-
tomatically give us representational systematicity. All that is needed for
representational systematicity is that complex representations be
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systematically related to component representations. The relationship
does not have to be classical.

Furthermore, tensor products naturally provide for at least a mini-
mum of structure sensitive processing. Take, in particular, a network
that does nothing but binding and unbinding in the manner we de-
scribed in Section 3. Given vector representations of filler and role, it
produces a tensor product representation of that filler in that role, and
it superimposes such tensor products to give representations of whole
structured representations. Also, given a representation of a complex
and a (query) representation of a filler (or role), it will answer with the
appropriate role (filler). Such constituent extraction is certainly struc-
ture sensitive processing. And if the constituents can be extracted, one
wants to say, they must in some sense be there.

But constituent extraction is a long way from inference. The crucial
question is whether information about constituent structure is present
in tensor product representations in a robust enough way to drive infer-
ence, and we think this must mean drive inference without extracting
constituents to be tokened. If the constituents must be extracted for the
system to make an inference, then the constituents will be (to that ex-
tent, in this system) classical in F&M's sense, and there will be a clear
danger of the system being mere implementation.17

In order to get clearer about this issue, we will discuss a question put
to us by Paul Smolensky: what would be a minimal connectionist system
that would show that connectionist systems are capable of genuine
structure sensitive inference? What we would like to see is an inference
system on tensor products. A modus ponens-er (detacher) suggests it-
self as the simplest example. Such a system should at least be able to do
something like the following: When it has a tensor product representa-
tion of a conditional and a representation of the antecedent of that con-
ditional, it generates a representation of the consequent of that
conditional without extracting the antecedent from the conditional.18 It
should at least do this for arbitrary simple conditionals not restricted to
an antecedently given vocabulary for components of conditionals.

Such a system would show something significant. For it would be
able to 'recognize' the identity of antecedent and free premise without
unbinding the antecedent. However, conditionals can be arbitrarily
long and complex. Assuming our only 'connective' is 'if then', condi-
tionals may have arbitrarily complex nested conditionals in the ante-
cedent and consequent. Thus, a full fledged modus ponens-er should be
able to deal with conditionals of arbitrary complexity.19 There are two
possible approaches one can consider.

One approach would be to try to construct a system that never un-
packed the conditional (or free premise) but detached without



Structured Representations 215

unpacking for conditionals of any degree of complexity. This, we take
it, would be quite an impressive feat, for it would involve doing some-
thing equivalent to recursively analyzing a conditional to determine
its antecedent and then determining the identity of antecedent and
second premise -but doing it without decomposing the conditional into
constituents.

A second, perhaps more promising, approach would do modus pon-
ens directly, without unpacking, only for fairly simple conditionals and
would unbind the antecedents of complex conditionals to check (per-
haps recursively) for identity with another premise. Such a system
would be a strong demonstration of the robust presence of constituent
structure in tensor product representations, for it would perform a
structure sensitive task without unbinding in simple cases and would
unbind token constituents to use in performing the same task in com-
plex cases. We think this kind of thing would give the best case for the
reality of constituents in tensor product representations: some structure
sensitive processing without tokening constituents and, also, some pro-
cessing in which constituents (fillers) are tokened in the same system
for other instances of the same process.

That two sentences are conditionals and, hence, (in that respect) of
the same form is encoded in their tensor product representations. For
each conditional, the identity of its antecedent is encoded. A system that
(sometimes) detaches without unpacking that conditional must make
use of both of these kinds of encoded information. What more could
you want?

We think one might, in fact, want to go one step further before admit-
ting that real non-classical effective syntax has been demonstrated. It is
a step which must be taken in any case, if any decently realistic connec-
tionist cognitive systems are to be produced. Networks can be very fan-
cy associative processors. Why is a modus ponens-er a structure
sensitive processor and not just a fancy associator?20

One thing that would (or should) allay this worry would be a system
that makes inferences of two different forms from the same statements,
say modus ponens and modus tollens. Since this would mean introduc-
ing negations of statements, a second statement form, it would also
complicate the modus ponens task. But the main thing is that if the
same tensor products are used without unbinding in two structure sen-
sitive operations, there is simply no longer any point in denying that the
processing is using the structural information encoded in the tensor
products. If we actually had a system that could do this kind of process-
ing and someone were to deny that it was doing structure sensitive pro-
cessing, the reasonable response would be to ignore him or her and get
on about our business.
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We have talked about a modus ponens (and modus tollens)-er, but, of
course, that is not the only thing that would plausibly demonstrate con-
stituent sensitive processing with non-classical constituents. The same
things would be shown by systems that did, for example, analogs of syl-
logistic inference or analogs of choice determination on the basis of be-
liefs and desires.

Fodor and McLaughlin give no argument that would tend to show
that it is not possible to construct connectionist systems of the kind just
described. As they put what we take to be the crux of their argument,
'the constituents of complex activity vectors typically aren't "there," so
if the causal consequences of tokening a complex vector are sensitive to
its constituents, that's a miracle' (200). But the information - the fact -
that, for example, 'John' is the subject of the sentence is encoded in the
vector. AH of this kind of syntactic information about the sentence is
'there' in the vector. If this information can play a causal role, perhaps
it would not be such a miracle.

But is there any positive reason to believe tensor products can be har-
nessed to support the kind of processing required? Smolensky says
there is. For, he says, tensor products already do these things in physics.
Unfortunately, it has not been clear how to understand the physics anal-
ogy, at least not to those of us uneducated in physics. But we think there
is a way of taking the analogy that does show something that is clearly
pertinent to the issue, namely, that tensor products can evolve in ways
that respect semantic information or semantic constraints.

The example Smolensky gives is the representation of the state of an
atom in quantum theory. But vectors are used in similar ways through-
out physics. Here is how the quantum story goes. The state of an atom
is represented by a vector in an abstract vector space. This vector is de-
termined as follows: the state ('spin') of an electron is represented by a
vector (Vs); the orbital of the electron in the atom is represented by an-
other vector (Vo); and the electron as situated in the atom is represented
by the tensor product of these two vectors (Vs x Vo). According to Smo-
lensky, "The atom as a whole is represented by a vector that is the sum
or superposition of vectors, each of which represents a particular elec-
tron situated in its orbital. (There are also contributions of the same sort
from nucleons)' (1988b, 20).21

The equations that determine the evolution of the atom through time
apply directly to the vector representing the atom as a whole, even
though the separate elements of this vector do not separately represent
the component electrons, etc., of the atom. Since the equations do gov-
ern the (evolving) vector representation of the entire atom, it seems rea-
sonable to say that this vector itself involves continuing reference to
particular electrons, although it lacks classical constituents referring to
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particular electrons. It tracks them. At any time it has information about
the state of each individual electron - information that can be rendered
explicit by mathematically extracting separate vectors representing the
states (at that time) of the separate electrons.

Suppose, then, that we had a connectionist network set up to corre-
spond to the vector representation of an atom, with the weights set so
that activation levels of nodes evolve in accordance with the equations
that determine the time evolution of the atom. It seems reasonable to
say that this network involves continuing reference to the components
of the atom and attribution of properties to them.22 It could, for exam-
ple, be part of a larger system in which this information about compo-
nents could be explicitly represented.

But the vector for the atom as a whole is decomposable in many other
ways as well. Why say that reference to the components of the atom is
real (F&M 198)? In particular, why say that distributed information
about this possible decomposition does any causal work in the system?
For one thing, this is a semantically interpretable decomposition. It re-
veals the information that the system carries about the components of
the atom.

But semantics is not causality. This is why we imagined an inferencer
that sometimes decomposes to explicitly token constituents as part of
the inferencing process. If the system extracts and uses components in
some process, those components are real for the system. Modus ponens
is, of course, a type of decomposition task, since the derived conclusion
is a constituent of the conditional premise. Other inference forms,
though not simply decomposition, have conclusions that are systemat-
ically related to certain constituents of premises.

In any case, this is the degree and kind of causal efficacy one is likely
to get in connectionism. Abstractly, it may not seem unreasonable to
question whether it is really effective syntax. But if one had a connec-
tionist system like the modus ponens and modus tollens-er that we
imagined above, such questioning would, we hold, become pointless.

In general, the question, 'But do we have genuine effective syntax?'
becomes otiose, at least when (1) there is semantically interpretable de-
composition (with processing that is structure/content appropriate rel-
ative to this interpretation); (2) some of this processing proceeds without
decomposition; and (3) some of it involves extraction of token constitu-
ents as well as combining tokens into complex representations.

But the physics system would not yet be an inferencer of the sort that
we are seeking. It shows (or would show) that a connectionist system
can preserve information through a complex evolution and can evolve
in ways that at least respect that information. However, it is not so clear
that its evolution is determined by the form of its representations alone,
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as we expect from an inferencer And the equations for a physics net-
work would be derived from physics. The network would be set up in
accordance with antecedently given equations that apply to the physi-
cal system the network represents. Obviously, a network that is an in-
ferencer cannot borrow in a similar way from the mathematics of its
subject matter, since there are no dynamical equations governing for-
mal inference. So it remains, we think, an open question as to whether
or not connectionism can deliver the goods.

Can Connectionism Explain Systematicity?

Suppose there are connectionist systems of the sort that we have asked
for, and that these will scale up so that there can be connectionist sys-
tems with effective syntax that are complex and generala.23 Such systems
will be systematic by nature. Still, F&P have an argument against con-
nectionism as a general theory of cognition, an argument that F&M re-
peat. F&M (185) take it that F&P have established, and that Smolensky
does not challenge,

(S)(i) Cognitive capacities are generally systematic, both in humans
and in many infrahuman organisms,

(ii) It is nomologically necessary that this is so.

As we have seen, and as Fodor et al. repeatedly emphasize, the classical
picture is ideally suited to explain (S). Classical representations have
syntactic structure. They are made up of repeatable elements suscepti-
ble to combination according to certain patterns. Syntactic structure
provides for systematicity. As F&M put the objection to connectionism,

So then: it is built into the Classical picture that you cannot think aRb unless
you are able to think bRa, but the Connectionist picture is neutral on whether
you can think aRb even if you can't think bRa. But its a law of nature that you
can't think aRb if you can't think bRa. So the Classical picture explains syste-
maticity and the Connectionist picture doesn't. So the Classical picture wins
(203).

It is possible to 'wire up' (as F&M say) a connectionist system so that it
is possible for it to be in a representational state aRb if and only if it is
possible for it to be in a representational state bRa (for any a, R, b in its
representational repertoire). But it is also possible to construct networks
that do not have this property. Why, then, is it, according to connection-
ism, that all natural cognitive systems exhibit systematicity?
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This is a serious question, more serious than respondents to F&P
have recognized. It cannot be answered, for example, merely by saying
that cognitive systems have evolved that way - that is, networks are ca-
pable of exhibiting systematicity, and nature/evolution is capable of
finding them. The question remains, why should nature (want to) find
only systematic (as opposed to non-systematic) networks or perpetuate
only these when she does find them?

Again, this is a serious question. But it is not a difficult one. An an-
swer is at hand from what we have said so far. We have argued that nat-
ural, embodied cognitive systems need effective syntax to get along in
the world. Any cognitive system of any complexity,24 perhaps any wor-
thy of the name, must employ syntactically structured representations.
Only with effective syntactically structured representations can a cogni-
tive system have the semantic richness it needs to survive. Any system
with effective syntax will be largely systematic. Thus, any cognitive sys-
tem will be largely systematic.

If this is correct, a connectionist explanation of systematicity is at
hand, assuming a positive answer to the question of Section 5 (i.e., that
there are, indeed, connectionist systems with effective syntax). Cogni-
tive systems are, says connectionism, connectionist networks. It is a cog-
nitive level law that any cognitive system will have effective syntax and,
therefore, be systematic.

It is true that connectionism is, in a sense, neutral on systematicity.
But if the tracking argument is correct, the demands of cognition are
not. It is not necessary for connectionism to explain systematicity all by
itself, so to speak. What is required is that there be an explanation of sys-
tematicity and that that explanation be compatible with connectionism.
Otherwise connectionism would lose. But there is an explanation, and
it is compatible with connectionism.

This dialectical situation led F&P to focus on systematicity rather
than on effective syntax or on compositional syntax and semantics, be-
cause they felt themselves forced to argue for the need for effective syn-
tax. But from our (H&T) point of view, the focus on systematicity itself
made the matter of explaining systematicity seem more difficult than it
is. There are good arguments (notably the tracking argument) that cog-
nition has, and must have, effective syntax. These arguments do not
employ systematicity as a premise. But these arguments, combined
with the fact that effective syntax explains systematicity, allow an easy
answer to the demand for an explanation of systematicity.

Given this, the connectionist can explain the evolution of systematic
connectionist cognizers in the following way: Nature favoured success-
ful cognizers. Successful cognizers need effective syntax, and effective
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syntax makes cognition systematic. So the cognizers that nature
favoured were systematic cognizers.

Why Non-classical Constituents
Might Yield Non-classical Processes

In Section 5 we described what we thought would be the minimum nec-
essary to show that connectionist systems are capable of structure sen-
sitive processing with non-classical syntax. Construction of such a
system would be a convincing demonstration of the possibility of dis-
tinctively connectionist effective syntax. This is important because the
possibility of effective syntax is one of the main questions concerning
the viability of connectionism. Provided also that the design of this sys-
tem was not task specific but looked to be capable of scaling up to some-
thing much more general (with many more structures and processes), it
would serve as a plausibility argument concerning the possibility of a
distinctively connectionist picture of cognition.

But it is important to be clear about the limited role of such a system.
It would be a plausibility argument and nothing more. It would provide
a significant, presently lacking, piece of evidence that an alternative,
connectionist conception of cognition is possible and worth pursuing.
But it would clearly not be a mini-version of a connectionist cognitive
system. Most important, it would still be implementation in the deepest
sense, for it would still be rule describable at the cognitive level and,
hence, isomorphic, at that level, to a classical system. If our arguments
against the classical picture (mentioned in Section 3) are correct, they
would apply equally to cognition so conceived. As we argued in Section
3, a real alternative connectionist conception of cognition requires soft-
ness - the rejection of hard representation level rules.

However, we think cognitive level softness is to be expected for com-
plex connectionist systems with non-classical syntax. It should be natu-
ral for them because of the combined effect of two factors.25 The first is
multiple realization. A given representation can be realized in many
ways in the same connectionist system - in principle, in continuously
many ways. Typically, a representation corresponds to a set of nodes.
The representation is considered to be actively realized when a suffi-
cient number of its nodes are sufficiently activated. But in decently com-
plex systems, not all of these nodes need to be activated for the
representation to be actively realized. Activation of different subsets of
nodes can constitute active realization of the same representation.

Furthermore, for each node, typically, any level of activation above a
certain minimum will count as that node being on. All these differences
in activation are differences which can affect processing but which have
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no finer-grained cognitive level description.26 As a result, different total
activation states that receive the same cognitive level description may
evolve to total activation states that receive different cognitive
level descriptions.

This, we think, is the way it ought to be, because it is the way it really
is with cognition. Different choices might be made by two cognizers
whose 'neural wiring' is identical and whose respective total states, pri-
or to choosing, receive the same cognitive level description. The differ-
ent choices would be due to differences in the total initial sub-
representational states of the two systems - that is, differences in how
the total initial cognitive level description is sub-representationally
realized.27

The second feature of connectionist systems that is likely to contrib-
ute to softness is the fact that they are well suited to multiple simulta-
neous soft constraint satisfaction. If you are going to buy a new car, and
price is no object, then you may choose a car on the basis of your taste
in automotive performance. But, in fact, most car purchases are based
on many factors, which may include: price, performance (which itself is
multifaceted), reliability, safety, fuel economy, comfort, size, conve-
nience of access, availability, and dealership qualities like service, integ-
rity, and convenience of the transaction. Each factor pushes towards one
or a small number of cars. Ideally, one's choice is the car that best satis-
fies the largest number of considerations. It may not be possible to get
what one wants in every respect. Thus, most constraints are soft. They
can be violated when the cognitive system is doing its work properly.
This sort of situation is common, not only in decision making but in, for
example, belief fixation and moral judgment formation.

As the PDP volumes emphasized, connectionist systems are natural-
ly good at multiple simultaneous constraint satisfaction. Weights are set
so that if one representation (or set of representations) is the only input,
the system will lead to a certain output representation. But they are also
set so that if a different representation is the only input, a different out-
put results. If the only input is performance data on the various candi-
date cars, a certain car would be chosen. If price data were the only
input, a different car would be chosen. With a complex input involving
many different representations, which would individually lead to dif-
ferent output representations, each tries to bring about its consequence.
The several constraints simultaneously compete and conspire until
the system settles into a state that best satisfies the total package of
constraints. No serial processing is imposed by the system or the
architecture.

Given that the representation of each of the constraints can be real-
ized in innumerable ways, the possibility of cognitive level softness due
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to multiple realizability is vastly multiplied. What is necessary for a
workable cognitive system is that the outcome be relevant in most
cases, not that it be the same in every case that receives the same cogni-
tive level initial description.28 Thus, if non-classical structure sensitive
processing is possible in connectionism, then, we suspect, softness may
well arise naturally.29

Conceptually, the important point concerning implementation is soft-
ness. To be a genuine alternative to classicism, to be genuinely nonim-
plementational, connectionist cognitive processes must not, in general,
be rule describable at the cognitive level. But, practically, the question
might turn on the possibility of non-classical effective syntax, for non-
classical connectionist effective syntax looks like it might well give us
the needed softness.

Conclusion

We have argued (I) that cognitive systems need effective syntax; (2) that
connectionism cannot give us a new conception of cognition if it
amounts to implementation of the classical picture; hence (3) that a new
connectionist conception of cognition would have to differ from the
classical view concerning either the nature of representation or the na-
ture of mental processes or both; (4) that, ultimately, what really counts
is the repudiation of the classical conception of mental processes as con-
forming to representation-level rules; (5) that, even so, non-classical
connectionist representations might well be a foundation for the right
sort of nonclassical mental processes; and (6) that Fodor and McLaugh-
lin have not made a plausible case that non-classical effective syntax is
unattainable. We then described the sort of task a connectionist system
should perform to show that effective non-classical connectionist syn-
tax is possible. We have argued (7) that if this is indeed possible, then
(contrary to Fodor, Pylyshyn, and McLaughlin) connectionism can pro-
vide an appropriate explanation of systematicity; (8) that representa-
tion-level softness is to be expected for complex connectionist systems
with non-classical syntax; and (9) that a connectionist conception of
cognition that incorporates effective syntax while eschewing hard rep-
resentation-level rules would be neither an implementation of the clas-
sical conception nor a reversion to associationism, and, thus, would
avoid both horns of the putative dilemma posed, by Fodor and
Pylyshyn, for connectionism.



Structured Representations 223

Notes

1 This paper is thoroughly collaborative. Authors are listed alphabetically.
2 See, for example, Touretzky (1989), Touretzky, et al. (1989). Artificial Intelli-

gence has an upcoming issue on structure in connectionist systems, and we
see new papers purporting to deal connectionistically with structure almost
every day.

3 We cannot, of course, show this case by case. But we think that once it is
made clear what is necessary to avoid the dilemma, it is obvious that none of
these systems do it.

4 On the other hand, it is important to understand that the existence of such a
system would not answer F&P's charge against connectionism. If Fodor and
Pylyshyn's charge is false, then it must be possible to construct connectionist
systems that avoid their dilemma. But this cannot be done simply by con-
structing a connectionist system in which structure sensitive processing oc-
curs, as will be made clear in the discussion of 'mere implementation' in
Section 3.

5 We will elaborate this claim in Section 3. Smolensky, of course, also holds that
mental processes are, in general, not classical. See Smolensky (1988a). The re-
lationships between Smolensky's views on this topic and our own are too
complex to go into in this paper.

6 In brief, the argument is: Real, complex cognitive systems need composition-
al semantics (in the reasonable sense that meanings of complex expressions
must be functions of meanings of a stock of primitives). And, we hold, the
only way for a complex, physical cognitive system to have compositional se-
mantics is for it to have compositional syntax (in the sense specified).

7 We take constituent structure to be a linguistic notion. It is an abstract, func-
tional notion. The subject of a sentence, for example, is an item that plays a
certain role in determining the truth conditions and inferential relations of
that sentence. This notion does not in itself imply that the subject of a sen-
tence must be a spatial or temporal part of that sentence, nor that it must in
some way be a classical constituent.

8 We distinguish the second and third claims, which are frequently not distin-
guished at all or, taken to be equivalent. We maintain that the second is true
of cognition while the third is not.

9 With the exception of Smolensky's 'On the Proper Treatment of Connection-
ism' (Smolensky 1988a).

10 One reason connectionism is promising is that it is a natural implementation
architecture for soft laws. More on this in the section "Why Non-Classical
constituents might Yield Non-Classical Processes.

11 Smolensky (1987a, 1988b, 1990); Hinton (1988); Pollock (1988, 1989, forth-
coming). Dyer (in press) and Chalmers (forthcoming) base processing on
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representations like Pollock's. Van Gelder (1990) gives a nice overview of
these methods.

12 There are obvious technical problems in doing this, since the vector repre-
senting loves Mary' as predicate must be the same dimension as that repre-
senting 'John' as subject. There are also a number of suggestions available for
dealing with such problems. Pollack, for example, has been working on con-
densation techniques that allow arbitrarily complex recursive structure to be
built into distributed representations of fixed band-width. Or one might con-
struct constituent structure trees in such a way that the branches from a node
are always of the same length. But such things clearly go well beyond the
scope of this paper.

13 It is tempting to think that the language of thought might be like this, with
fully distributed constituent structure and no classical constituents.

14 In conversation, Brian McLaughlin responded to this example by suggesting
that representations of the lines of the individual instruments are tokened on
the tape, because, for example, just one of these lines could be deleted by
suitably modifying the tape. That would mean that representations of con-
stituent lines of musical ensembles would count as classical. But if that is all
that it takes to count as being tokened, the syntactic constituents of tensor
product representations will also count as classical. Clearly, this is a sugges-
tion that Fodor and McLaughlin should not pursue.

15 The analogy between tensor products and waves is, of course, intimate and
intended and is brought out nicely by the square drumhead. The two stimu-
lated sides are analogous to the role and filler units, the drumhead itself is
analogous to the binding units. The vectorial representation of any given
wave on the two dimensional surface of the drumhead will be a sum of vec-
tors representing various (non-tokened) constituent two-dimensional
waves. Each of the latter vectors, in turn, is the tensor product of two vectors
respectively representing a (non-tokened) uniform sine wave along the
drumhead's x-axis and y~axis.

A non-uniform wave can be mathematically characterized, through Fou-
rier analysis, as a superposition of uniform sine waves of various frequen-
cies, each with a specific amplitude. These constituent sine waves are not
themselves physically tokened when and where the non-uniform wave is to-
kened. Yet non-uniform waves have numerous constituent sensitive effects
that are directly responsive to specific constituent frequencies. The current in
a radio or television set, for example, resonates to one specific constituent fre-
quency of the impinging electromagnetic waves - whatever specific frequen-
cy the tuner is set to receive.

However, there is a significant disanalogy between wave phenomena and
what we expect from a cognitive system. For the evolution of a complex
wave can be analyzed as the independent evolution of its constituent waves.
Clearly, the behaviour of a cognitive system cannot be analysable into the
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independent evolution of constituents, because inference and other cognitive
processes depend on the interaction of constituents in distinct positions in
different representations.

16 We remark that the systems (that we are aware of) that have been offered in
response to F&P do not meet the conditions we shall describe.

17 There remains, of course, the possibility of what we called type 2 connection-
ism above: classical constituents but non-rule describable, structure sensitive
processing.

18 Technical questions immediately arise, such as whether the statements in
question should be represented in distinct pools of nodes or in the same pool.
What is essential, we think, is that the method used not be an ad hoc solution
for the specific inference form in question, but be one that generalizes to oth-
er inferences and, in principle, to systems that make a rich variety of struc-
ture dependent inferences.

19 It is necessary to say a word about the matter of arbitrary complexity. Fodor
and Pylyshyn introduced the systematicity argument, essentially, as a re-
placement for the productivity argument because of a perception that the
productivity argument begs a question against connectionism.

The productivity argument asserts that thought is productive, that is,
there is no longest possible thought. For any thought a cognitive system has,
there is a longer thought it could have, absent limitations of memory, mortal-
ity, etc. Thus, abstracting from such limitations, there are infinitely many
possible thoughts a human being is capable of having. But human minds are
finite. The only way to achieve this infinite capacity with finite means is for
thoughts to be recursively structured from a finite vocabulary. Hence, con-
stituent structure,

This has been thought to beg the question against connectionism, because
it assumes the idealization of an infinitely extensible memory. But, it is
thought, connectionists cannot accept this idealization, because when you
add nodes (and therefore connections) to extend memory capacity, you nec-
essarily also change content, since content is determined by weights on con-
nections. (Our colleagues, Stan Franklin and Max Garzon, have
demonstrated networks for which adding nodes does not alter content (per-
sonal communication), but never mind.) This, we think, is a classic example
of classical thinking in a non- classical context. One way to extend the mem-
ory of a connectionist network is to improve resolution, so that, as smaller
and smaller differences in activation at each node are discriminated in the
network, processing capacity, memory, and so forth increase. Productivity is
not something connectionists must deny. See Pollack (1988,1989).

Productivity is but one of a cluster of ideas that have come under the term
'competence' in the so-called competence/performance distinction. In gen-
eral, we think, contrary to what we have frequently read and heard, this
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distinction is as much at home in connectionism as it is in the classical
paradigm.

For any given modus ponens-ing network, there will, of course, be a limit
to the size of conditional from which it will infer. But the process by which it
infers should, ideally, be one which permits processing of larger conditionals
as the resolution of the network increases. And, as the limits of capacity are
reached, we would expect degradation to be graceful.

20 One might, for example, ask this about Chalmers' (forthcoming) system that
turns active sentences into the corresponding passive.

21 We have been told that this is not correct. The relevant vector representation
of the atom as a whole is the sum of vectors that are tensor products of (rough-
ly) vectors that represent an electron situated in an orbital. So the analogy
with connectionist tensor product representation is less close than it appears,
but this does not affect Smolensky's mathematical analysis of tensor product
representations, nor, as far as we can see, does it affect anything we or Smo-
lensky say about the force of the analogy.

22 Fodor and McLaughlin say: 'It's a difference between psychology and phys-
ics that whereas psychology is about the causal laws that govern tokenings
of (mental) representations, physics is about the causal laws that govern (not
mental representations but) atoms, electrons and the like. Since being a rep-
resentation isn't a property in the domain of physical theory, the question
whether mental representations have constituents has no analog in physics
(200 n.).'

But that misses the point. The analogy is between connectionist networks
and physical theory - which does contain representations - not between
connectionism and physical stuff. The point is that physical theory
contains (something like) representations of the sort that seem to be wanted
in connectionism.

23 What we are to suppose is that such systems are at least in principle possible.
It does not have to be within human capacity to construct them.

24 Note that F&M say 'many' infrahuman organisms exhibit systematicity. It is
not so clear that really simple cognitive systems are systematic. If some are
not, we have an explanation of this fact which the classical picture lacks. If a
cognitive system gets simple enough, maybe it does not need syntax.

25 It may also be natural for connectionist syntax in which classical constituents
are constructed. But it is hard to see how the second of the two factors we
shall mention could be effected with classical constituents.

26 In local representation, differences in activation might be identifiable with
something at the cognitive level, like intensity or degree of belief. But this is
not, in general, possible for distributed representations.

In one realization of a representation, one node might be more activated
than in another realization while a different node is less activated. If two dif-
ferent activation patterns constitute realizations of the same representation,
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then differences between them will have no cognitive level correlate.
There can, of course, be (a strictly limited amount of) multiple realization

in classical systems. But in classical systems, multiple realization does not,
and is not supposed to, affect processing.

27 Connectionist systems are non-linear dynamical systems. (If purely linear,
they face well-known limitations like those of perceptrons.) Neural systems
are probably non-linear, too. So presumably both kinds of systems have cha-
otic attractors and also have attractor basins with fractal boundaries. When
processing is chaotic (as it will be when the system commences its activity
within the boundary of a chaotic attractor or gets positioned within such a
boundary by its inputs), infinitesimally small differences in the realization of
a total representation-level description can rapidly amplify during process-
ing- sensitive dependence on initial conditions. And even when processing
involves evolution to a point attractor (as in connectionist networks when
they 'settle' to a fixed stable state), infinitesimally small differences in initial
realization of a representation- level total state can locate the system on dif-
ferent sides of various fractal basin boundaries. Being in one attractor basin
rather than another when processing commences could dramatically affect
the representation level outcome of processing.

28 For present purposes, we do not need to maintain that multiple simulta-
neous soft constraint satisfaction (MCSSC) is itself a source of softness, only
that it compounds the softness due to multiple realizability. We believe, how-
ever, that the true nature of MCSSC in human cognition does have the con-
sequence that human cognition is soft, i.e., that it does not conform to hard
representation-level rules. The basic idea is that there is no limit to possibly
relevant constraints. Hence, every true generalization concerning human de-
cision making, belief fixation, etc. contains an ineliminable ceteris paribus
clause. The arguments for these claims are, as one might expect, rather in-
volved. See Horgan and Tienson (1989,1990, forthcoming).

29 To be sure, extant toy systems that do multiple constraint satisfaction do it
with representations that are not syntactically structured. It is by no means
obvious that multiple constraint satisfaction can be carried out with
nonclassical structured representations in a way that respects structured
content.
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7
Local Modelling in Phonology

John Goldsmith

Introduction

Recent work in connectionist modelling suggests the possibility of for-
mal models of phonological representation which will offer deeper ex-
planations of basic phonological properties than our current models
allow us. The present paper is an initial exploration of certain linguistic
problems from this newer perspective.1 It is also, as I shall explain in the
final section, an effort to produce a formal phonological grammar that
is neither static nor derivational - a model that is not a hybrid of the two
but, in fact, different from both.

Our goal in these explorations is the traditional goal in phonological
work: the development of a formal model that allows for a simple and
direct account of facts within a specific language, set within the frame-
work of an approach which allows for the statement of the principles
found in other languages and yet which allows for as few unobserved
sorts of principles as possible. It is of some importance for us to observe
that the goals we set are those of the traditional linguist, and not - at
least not directly - those of other connectionist modellers, whose goals
may be informed by other theoretical questions, including (but not lim-
ited to) the issues of leamability, the relevance of particular connection-
ist learning techniques (such as back-propagation, for example), the
significance of a memory structure that is content-addressable, or the
importance of prototype effects.

None of these play a central role in the present discussion, and to that
extent we may recognize that the present paper may be of more interest
to the linguist than to the connectionist.2 Nonetheless, we approach one
of the best studied of the higher level cognitive functions - language,
and, in particular, phonology - and anything we can learn from this
subject should be of general, and perhaps particular, interest to students
of mental modelling.

229
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Principles Informing Our Approach

The properties that characterize the models we will explore are the fol-
lowing:

(1) Gradience: representations consist of a set of units, each of which
is assigned an activation level, a variable that can range over all
values within a real interval (in most cases, the interval being all
real numbers, with a practical limitation keeping them not far
from the internal (-1,1)).

(2) Categorical effects out of gradience: continuous-valued variables
may be used to model categorical effects, either by seeking max-
ima and minima or by use of threshold techniques. That is, a lin-
guistic effect may be reported as reflecting a variable (e.g.,
stress) which takes on only a small number of values (typically
two, in which case the values may be referred to as +/-)• A con-
tinuous-valued variable V within the model may be reduced to
a 'categorical' variable C by establishing thresholds so that a val-
ue of V above the threshold corresponds to + C, and a value be-
low the threshold corresponds to - C. Subthreshold effects
within the variable V, however, will typically continue to play
an important role in a fashion which the categorical model, in-
duced from the continuous-valued model, cannot directly sim-
ulate. More frequently, we will look not for thresholds as such,
but, rather, turning points - maxima and minima - in the curves
that are developed.

(3) Local computation: the effects with which we will be concerned
will all be the result of establishing simple arithmetic relations
for the activation of neighbouring units.

(4) Homogeneity; we will consider a number of parameters that gov-
ern the way in which units (corresponding at times to segments
and at times to syllables) affect the activation level of their
neighbours (our , , etc., below). We will assume that these pa-
rameters are uniform within a given language and may not vary
from place to place within a word. This assumption has no nat-
ural grounding in current connectionist work but seems ex-
tremely natural (indeed, unavoidable) from the point of view of
the linguist.

(5) No hidden representations: all linguistically relevant generaliza-
tions are realized within the model as connectionist effects oper-
ating simultaneously and interacting symmetrically with each
other. None can be said to apply 'before' or 'after' another.
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Some Specifics of Our Proposal

The central suggestions of this paper are that:

(A) First, the organizing principles of the metrical grid, which cre-
ates feet from syllables, and the organizing principle on the skel-
etal tier, which creates syllables from segments on that tier, are
in essence the same, though they differ in the setting of particu-
lar arithmetic parameters;

(B) Second, the metrical grid and the skeletal tier should each be
modelled as a linear sequence of units in which each unit is as-
signed a real number for an activation value and in which each
unit directly affects its (left- and right-hand) neighbours;

(C) Third, the structure we observe on the metrical grid (head and
non-head positions in feet) and on the skeletal tier (onset, nucle-
us, and coda assignment) is the result of finding peaks and
troughs and of imposing thresholds on the activation values of
the elements on the grid and skeleton.

The Metrical Grid

The metrical grid is a type of phonological representation designed to
express naturally the properties of stress and accent systems observed
in natural languages. It is an object, as in Figure 7.1, that consists, first,

x Row 2
x x Row 1

xxx x Row 0
Alabama

Figure 7.1

of a bottom row of positions (Row 0), each of which represents (or cor-
responds to, or is associated with) a syllable. Above some of these Row
0 elements may be found a Row 1 element; these syllables are those that
are stressed (i.e., Row 1 markings represent simple stress). Row 0 ele-
ments with no Row 1 marking over them are unstressed. A Row 2 ele-
ment, in turn, may be found on top of some of the Row 1 elements
(though not over any position where a Row 1 element is not found).
Such syllables, which have a Row 0,1, and 2 element above them, are
taken to bear word-level primary stress and so forth: the higher the col-
umn of markings over a Row 0 element the higher the degree of its
stress. While it is nowhere written in gilt letters, it is nonetheless uncon-
troversial to suggest that the two fundamental properties of the

x
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metrical grid are, first, its inherent avoidance of Stress Clash, and, sec-
ond, its tendency towards Perfect Grid. Stress Clash refers to the conge-
ries of ways in which stress on consecutive syllables is avoided either
by blocking a rule (such as Perfect Grid or the End Rule) from applying
if that would create a stress clash or by triggering a rule of stress move-
ment or deletion in case stress clash has arisen. Perfect Grid is the name
assigned (by Prince 1982) to the rule that assigns stress to alternate syl-
lables radiating outward (left and right) from a syllable already as-
signed stress. These two properties are neither explained nor
explainable within grid theory nor are they related to one another with-
in grid theory. This is, we suggest, an unsatisfactory place to leave the
matter.

A local network of the sort we outlined above can shed light on this
problem. We may consider a model which consists of a sequence of
units, each of which conceptually correspond to a Row 0 element in the
familiar grid (i.e., a syllable4). Units whose activations are local maxi-
ma, that is, whose activation is greater than either of its neighbours', are
phonologically stressed.

Each unit inhibits its two neighbours, though not in quite identical
fashion. If we say generally that the activation level of the ith element is
Xi, then we will say that the ith element sends an inhibitory signal of
strength .xi- to the preceding element (i.e., to the i-lth element), and it
sends an inhibitory signal of strength .xi to the element on the right
(i.e., the i+lth element), as suggested in Figure 7.2; the inhibitory rela-
tions there should be understood as being established between all pairs
of neighbours. This is more explicitly given in Example 7.1, where
the superscript t marks time, that is, the timing of the iterative
recomputations.5

Figure 7.2: Dynamic computational network



Local Modelling in Phonology 233

If none of the elements are activated, then the elements of the grid are
all at zero level, which provides no information about stress. However,
from a phonologist's point of view, the activation of a grid element is the
composition of three factors:

(1) positionally-defined stress, as when, for example, the first or the
penultimate syllable of a word is stressed by a general rule of the
language; the amount of positional activation may be different
for these two positions.

(2) the effects of Perfect Grid, i.e., the local effects of the stress of
neighbouring elements; and

(3) inherent stress arising out of quantity-sensitivity, i.e., language-
specific principles by which syllables with a particular internal
structure are ipso facto stressed (typically, those syllables with a
long vowel and often, also, those which end with a consonant)
regardless of where they appear in a word.6

We shall not discuss the effects of quantity-sensitivity in this paper,
leaving the matter to the longer treatment that it deserves. The effects of
Perfect Grid may be modelled as above, with the leftward and right-
ward inhibitory effects indicated in Figure 7.2. In general, it is helpful to
distinguish between inherent activation of an element and derived ac-
tivation, where the derived activation is that produced by the effects of
lateral inhibition, and inherent activation is due to the effects of posi-
tionally-defined stress or of quantity-sensitivity. Let us consider the
matter of positionally-defined stress in a bit more detail.

Consider the case of a language where the first syllable is stressed. We
may indicate this with a function K (mnemonically, from 'characteristic
function'), defined on the indices of the grid elements, in such a fashion
that K(l)=1.0 (i.e., the first element is activated) and K(i)-0 for all i other
than 1.

In such a scheme, if and are both negative (and we assume, in this
paper, that a and are both between -1.0 and 0.0), then the positive ac-
tivation of X1 will give rise to a (negative) activation of x2 equal to ; this,
in turn, will give rise to a (positive activation) of x3 of . The negative
activation of x2 not only leads to a positive activation of x3; it also, in
turn, leads to a higher activation of X1 through what we might call the
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=-0.2, =-0.7.
Syllable Number:

1

1

1

1.14

1.14

1.18

1.18

1.19

1.19

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

2

-.70

-.70

-.90

-.90

-.96

-.96

-.99

-.99

-1.00

-1.00

-1.01

-1.01

-1.01

-1.01

-1.01

3

.49

.49

.70

.70

.78

.78

.82

.82

.83

.83

.84

.84

.84

.84

4

-.34

-.34

-.54

-.54

-.62

-.62

-.66

-.66

-.68

-.68

-.68

-.68

-.69

5

.24

.24

.37

.37

.44

.44

.46

.46

.47

.47

.48

.48

Table 7.1

- e f f e c t (i.e., leftward effects with a factor of a), which, in turn, leads to
a cascading of effects which must then be modelled on a computer. A
typical example of this is given in Table 7.1, where a - - 0.2 and = -.7.
The rows show the successive activation values of each sequential
element.

This is seen graphically in Figure 7.3. The first point to notice is that
the effects of Perfect Grid have been built into the local structure of this
network. The - and -effects give rise to a pattern of alternating posi-
tive and negative numbers through local lateral inhibition of this sort,
and equilibrium is quickly reached.
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Figure 7.3: Evolution of a 5 unit system

Let us consider how Stress Clash Avoidance is also directly modelled
by this system. Consider the result of placing an initial pattern of '1' unit
of stress on both the first and second syllables of the word in Table 7.1
above, along with two possible settings for a and : one where a = -0.2,

= -0.7, and one where the settings are the opposit), i.e., where a = -0.7,
= -0.2. The curve of the derived forms (i.e., the first and second

derivatives rather than the absolute values) is what is of interest to us,
and these are in Figure 7.4 and Figure 7.5.

As the final equilibrium figures show, setting one of a or signifi-
cantly higher than the other (i.e., not making them equal) leads to a sit-
uation in which, despite the inherent activation of both, only one settles
into a state with an activation level close to the inherent value of 1.00.
However, in both cases, only one of the elements is a local maximum
and is, hence, phonologically stressed.

Indonesian
Let us now consider a recent analysis of the stress system of Indonesian
offered by Cohn 1989. Cohn's analysis is placed within traditional gen-
erative terms - in particular, within the framework of lexical phonolo-
gy.7 In certain respects, her account could hardly be more at variance
with the principles outlined at the beginning of this paper: the analysis
relies heavily on rule ordering and on derivations in which material
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Figure 7.4: Beta-strong clash resolution

that is present at an earlier level of representation has an effect on the
eventual surface form even though that material is deleted before it ac-
tually surfaces. Hers is an elegant analysis, using the resources of deri-
vational lexical phonology in the most appropriate fashion.

Indonesian stress can be described in terms of a small number of sim-
ple principles; the facts are schematically illustrated in the bottom row
of Table 7.2. Stress is applied to the penultimate syllable of a word as

Figure 7.5: Alpha-strong clash resolution
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Table 7.2: Noncyclic (monomorphemic) forms

rule

1

2

3

4

stress clash

well as to the first syllable. If these two are adjacent (i.e., if the word has
three syllables), the first syllable fails to be stressed: stress clash in this
case resolves to the right-hand (penultimate) element. In addition, if the
word is long enough, alternate syllables to the left of the main stressed
penultimate syllable are stressed, though if this should lead to a stress
on the second syllable and, hence, a clash with the first syllable, this
alternating stress is suppressed. The rightmost stressed syllable is, pre-
dictably, that which receives the highest degree of stress.

These facts can be implemented in metrical grid theory, as Cohn sug-
gests, with the ordered rules in Example 7.2. Illustrative derivations are
given in Table 7.2.

(2) Indonesian (Cohn's proposal)
(a) Final syllable is extrametrical
(b) End Rule: Final ("Penultimate Stress')
(c) End Rule: Initial (blocked if clash should ensue)

'Initial Stress'
(d) Perfect Grid (Right to Left) (blocked if clash should ensue)

Examples:

(A) bicara
(B) bijaksana
(C) xatulistiwa
(D) otobiografi
(E) amerikanisasi

'speak'
'wise'
'equator'
'autobiography'
'Americanization'

The stress system that we see in Indonesian is a clear example of the sort
of system that should be modellable as well by the dynamic computa-
tional techniques discussed above. A model of the sort we have just con-
sidered, with = -0.5 and = 0.0, provides precisely the right results-

237
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Table 7.3: Monomorphemic forms

number of
syllables

3

4

5

6

stress pattern values

0.20

0.95

0.58

0.76

1.0

-0.5

0.25

-0.13

0.0

1.0 0.0

-0.5 1.0 0.0

0.25 -0.5 1.0 0.0

stress clash avoidance in the correct direction and Perfect Grid effects
(i.e., alternating stress leftward from the penultimate syllable) - if we
place inherent stress (our K-function) on the first and penultimate
syllables: 1.0 on the penult and 0.7 on the first syllable. Needless to say,
no ordering is necessary or possible. The relevant numbers are given in
Table 7.3.

An especially interesting aspect of Cohn's treatment of Indonesian in-
volves what she argues is a cyclic application of several rules, applying
first to a base word to produce a derived form and then once again to a
larger form 'after' a suffix is added.

The facts, as Cohn describes them, are as given in Example 7.3 for
words composed of a stem plus a suffix (i.e., the case of words analyzed
with two cycles), and the forms with two suffixes (analyzed with three
cycles) are given in Example 7.4. The interesting cases are those where
the stress is assigned in a fashion different from that found with mono-
morphemic forms.

(3) Two cycle case

(4) Three cycle case

A crucial case is given in Table 7.4, the case where, as Cohn shows, a
monomorphemic six syllable word has a different stress pattern from a
six syllable word that is composed of a five syllable base plus a suffix
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Table 7.4

1 st cycle

1

2

3

4

2nd cycle

1

2

3

4

output of
2nd cycle

stress clash
reduction

output

does not apply (clash avoidance)

does not apply (clash avoidance)

added only after the base has been processed as an independent word.
The derivation for the monomorphemic, noncyclic form was given
above in Table 7.2; her cyclic derivational account is sketched in
Table 7.4.

Cohn suggests that the missing stress on the third syllable of the bi-
morphemic word in Table 7.4 is due to the presence of a stress on the
fourth syllable (which is the penult of the inner cycle). That 4th syllable
stress is lost, however, on the second cycle, when the 5th syllable re-
ceives a stress (it now being the penultimate syllable in the word), and
the 4th syllable loses its stress due to the effects of an additional stress-
deleting rule that applies when stress clash arises.

Our present model derives the correct result with a good deal less
machinery than Cohn's and with no intermediate hidden representa-
tions. The values generated are given in Figure 7.6a, and are, as we see,
accurate predictions. These results are derived by interpreting cyclicity
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Figure 7.6a: Six syllable word

not as a derivational notion but, rather, as a statement about phonolog-
ical structure. Thus in a six syllable word of the sort in Figure 7.6b, the
fourth syllable is the penult of the inner word (and thus receives a posi-
tional activation of 1.0), while the fifth syllable is also the penultimate
syllable - of the outer word; it too receives positional activation of 1.0.
Quite generally, to say that a structure is cyclic is to say that it has nested
phonological word structure (i.e., structure of the form

Some words quite transparently have internal word structure, such as
the word Indianaism, for example, which plainly contains the word In-
diana, or the compound driftwood, containing a sequence — ft — which
would not be possible as a word-internal coda. Not all morphologically
derived words are of this phonological form; Buddhism, for example, is
derived from Buddha + ism, but undergoes effects occasioned by the lack
of any internal word structure. In short, phonological structure and
morphological structure are different; and those robust effects tradi-
tionally ascribed to cyclicity are due to nested phonological word
structure.

Hence if a language assigns stress to the penultimate syllable of a
word, and a nested phonological structure is found, then both the 4th
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Figure 7.6b: Five syllable word plus suffix

and the 5th syllables will receive inherent activation in their capacities
as the penult of the internal and the external phonological word,
respectively.

As we see in Figure 7.6b, as well, the activation assigned to the 4th
syllable has an effect without leading to that syllable being stressed on
the surface. At the same time, this result is achieved without hidden
representations; it is, rather, achieved by means of a crucial character of
the model - the presence of significant subthreshold difference. As we
can see, the 4th syllable's activation value is strikingly different in Fig-
ure 7.6a and b; this difference is the sum total of the effects on that syl-
lable, and this difference, in both cases, has an effect on the lack of stress
on the syllable that precedes it. On the other hand, as we have seen,
there are no hidden representations; the forces at work affect each other
simultaneously and seek a stable resolution of their requirements.

We present in Table 7.5 and Table 7.6 the relevant calculations of all
the forms.

Syllabification
The local dynamic computational models of phonological systems
which are being explored in this paper were originally motivated by the
study of syllabification systems.10 In this section I will only sketch this
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number of
syllables

3

4

5

6

stress pattern values

0.50

0,45

0.83

0.64

1.0

0.5

-0.25

0.13

0.0

1.0 0.0

0.5 1.0 0.0

-0.25 0.5 1.0 0.0

Table 7.5: Two cycle forms

number of
syllables

3

4

5

6

stress pattern values

0.50

0.75

0.33

0.89

1.0

0.5

0.75

-0.38

0.0

1.0 0.0

0.5 1.0 0.0

0.75 0.5 1.0 0.0

Table 7.6: Three cycle forms

issue in very broad strokes and will leave a detailed discussion for
another place.11

We hypothesize that the characteristics that we have established for
stress systems (i.e., for our interpretation of metrical grids) hold equally
of the skeletal tier, and that the envelope - the ups and downs - of
activation of the skeletal positions is interpreted linguistically as sylla-
ble structure, in precisely the same way that the ups and downs of the
grid positions are interpreted (in more and less complex ways) as stress
and foot structuring.

We drew a distinction above regarding inherent activation and de-
rived activation that remains quite useful for us. When we focus on syl-
labification and the skeletal tier, we are soon led to the conclusion that
the inherent activation of a segment is its (inherent) sonority, while the
derived activation is a contextually determined function of its inherent
sonority.

Why should this be? The answer is not hard to see. Sonority is, fun-
damentally, the propensity that a segment has to be the nucleus of a syl-
lable. The most sonorous segment, a, has no choice; it must be the
nucleus of its syllable. The least sonorous elements, the voiceless stops,

connectionism: Theory and Practice
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have the least chance to be located in the nucleus of their respective syl-
lables. Segments in between vary with respect to whether they will be
nuclear, and the ways in which they vary involve both language-partic-
ular determinants (i may be syllabic in English but not in Spanish) and
contextual determinants (l is not syllabic before a stressed syllable in the
same word).

Thus we may consider the possibility that the determination of syl-
labification involves the same kind of contextual calculations involving
inherent sonority and relative position that we considered in the pre-
ceding work. Elements with an activation above a certain threshold
(call it N) will in effect play the role of the nucleus of their syllable; those
below a certain threshold (call it O) are onset elements; and those with
an activation level between O and N are coda elements.

—> increasing derived activation

onset O coda N nucleus

The models of lateral inhibition we have considered so far have the
natural property that, in the absence of any inherent activation, they
create up and down waves that change direction with each unit. In the
simplest case, as we have seen, this create a situation in which the de-
rived activations are alternating between positive and negative num-
bers. If we consider the trivial case where the two thresholds are both
zero (O=N=0.0), then this statement amounts to the natural observation
that if one could speak a spoken language without using any segments
at all it would consist of sequences of onset-nucleus (... ONONONON
...): that is, the rhythmicity of syllabification follows as much from the
network organization of the phonological system as it does from the
choice of the segments themselves.

The Broader Picture

There is another motivation for the work that has been reported in this
paper that goes beyond interest in connectionist-type modelling of pho-
nological processes. In several recent papers (Goldsmith 1989,1990), I
have argued for a conception of phonological theory that is neither stat-
ic nor derivational. Work to date on phonological theory has largely as-
sumed - implicitly - that, much along the lines of M. Jourdan's tutor's
approach, any theory that was not static in design was ipso facto deri-
vational. The approach that I have been developing - which I call 'har-
monic phonology' -- posits three phonological levels (M-level, W-level,
and P-level) and also posits dynamic processes on each level. Thus each
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level is not static; it does not consist of a single representation. However,
the structural modifications that occur on each level are not just part of
the wide range of effects possible within the confines of a production
system (i.e., traditional generative rules); all changes serve to increase
the well-formedness of a structure in a fashion that is constant across
the language.

However, it is no simple task to elaborate a theory of phonological
representation cum theory of dynamic simplification from scratch. The
present research is offered as one case study - one example - of this sort.
The construction of accent patterns and of syllabification is now widely
regarded, correctly, as a significant portion of the phonology of any giv-
en spoken language, and the present systems are offered as an example
of how a dynamic, but nonderivational, phonology may be considered
as a live, interesting, and explanatory alternative to the generative
conception.

Notes

1 I am grateful for very helpful discussions with Tom Bever and most especial-
ly with Gary Larson, who has made several suggestions that have substan-
tively improved this paper; I am also grateful to members of the audience at
the presentation of some of this material at the University of Rochester;
Michael Tanenhaus made some suggestions that have been incorporated
here. In earlier stages of this work, I also appreciated helpful comments by
David Corina, Jeff Elman, Mary Hare, George Lakoff, and David Perlmutter,
and, especially, Caroline Wiltshire. This paper was written in December,
1989, and revised in May, 1991. This material is based in part upon work sup-
ported by the National Science Foundation under Grant No. BNS 9000678.

2 I also presume a familiarity with both the style and content of phonological
research.

3 For a detailed description of the metrical grid, the reader may consult Gold-
smith 1990, Chapter 4.

4 Or perhaps a mora; see Goldsmith 1990 for discussion.
5 A brief mathematical excursus may be of interest to some readers. If we con-

sider the effect of the network as a mathematical operator applying to the
vector which represents the state of the network at any given moment t, then
that operator M is built simply out of an n by n matrix, where n is the number
of units. We define M as being zero everywhere except on the supradiagonal,
the diagonal above the major diagonal, where it is a (i.e., xi,i+1 = ), and the
subdiagonal, where it is ft (i.e., xi,i-1= ). If we call the initial state of the sys-
tem the vector v, then after k iterations, the system is in a state defined by v
+ M k(v) , where Mk is the kth power of M.

6 See Goldsmith 1990, Chapters 3 and 4, and references there.
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7 See Kiparsky 1982, and also Goldsmith 1990, Chapter 5.
8 This point is discussed in greater detail in Goldsmith 1990 and in print.
9 That phonological word structure can be nested (i.e., recursive) is no more

surprising than that syntactic structure can and, in a sense, must be: we find
full finite (tensed) clauses within other finite clauses, quite obviously, and
hardly give the matter a moment's thought. On the other hand, just as a word
can be combined with another morpheme and not retain its character as a
phonological word, so too can a sentence be combined as part of a larger sen-
tence and not maintain its independent syntactic status; in the literature, this
is known as clause union.

10 I have gained much from conversations with Gary Larson, of the University
of Chicago, on this topic; Larson is also developing some approaches of his
own to local modelling in phonology. My thinking has also been influenced
here by recent unpublished work by G.N. Clements on sonority slopes and
their relation to well-formed syllabification.

11 Larson and I have several papers in progress on this point. Two early discus-
sions have appeared: Goldsmith and Larson 1990 and Larson 1990.
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8
Connectionism and the Philosophy of

Mental Representation
William Ramsey

Introduction

Undoubtedly one of the biggest challenges facing any physicalist ac-
count of the mind is to provide a fully naturalistic explanation of mental
representation. Discussions concerning naturalized accounts of mental
representation have typically focused on two central questions: (1) In
virtue of what exactly, are we justified in calling some entity or state a
representation of something else, and (2) what form or structure does
such a representation take in a cognitive system? In short, how do we
account for the content of a representation, and how do we account for
its form? Traditionally, it has been considered the business of philoso-
phy to come up with answers to the first sort of question and the job of
empirical science to answer questions of the second sort. However, it is
becoming increasingly clear that the two issues are much more closely
intertwined than was formerly assumed. The sorts of philosophical sto-
ries we tell about what it is for something to be a representation can
place strong constraints on the sorts of accounts we give of their form
and, more importantly for this essay, vice-versa.

Below, I want to consider the sort of 'How' stories that get told in con-
nectionist research and explore the implications they might have for
philosophical accounts of mental representation. My claim will be that
if at least some of what connectionists have to say about the structure of
representation turns out to be true, then this will have important rami-
fications for philosophical theories of mental states and processes.

To show all this, the essay will be organized in the following way. In
PHILOSOPHICAL ACCOUNTS OF REPRESENTATION, I will present the
philosophical tradition, sketching various positions taken by philoso-
phers who have offered analyses of the notion of mental representation.
I will argue that despite their philosophical origin, all of these accounts
make fairly strong presuppositions about representation structure.
These views will be divided into two groups, depending on whether
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the mental representation is thought to be of a concept or of a proposi-
tion. Subsequent divisions will then be made within both groups, and
views will be classified according to the sorts of internal structure they
assume representations to have. In CONNECTIONIST REPRESENTA-
TIONS, I will turn to the connectionist account of the representation
structure. In fact, there is no single account here but, instead, a collec-
tion of different representation types and styles which are not always
carefully distinguished in the literature. Fortunately, we can limit our
analysis to four connectionist hypotheses of representation structure
that directly impinge on the philosophical views sketched in PHILO-
SOPHICAL ACCOUNTS OF REPRESENTATION. Finally, in PHILOSOPHI-
CAL IMPLICATIONS OF CONNECTIONIST REPRESENTATIONS, I will
explore the philosophical implications of these connectionist accounts
of representation. We will see how the success of certain connectionist
models will in some cases undermine and in other cases support the
different stories philosophers tell about representation and higher
cognitive process.

Philosophical Accounts of Representation

At first blush, it may seem a bit odd to suppose that philosophers have
anything interesting to say about the form or structure of mental repre-
sentations, regardless of whether they are of concepts or of proposi-
tions. After all, this seems to be an empirical matter to be decided by
careful investigation in some other area of cognitive science, such as
psychology or neuroscience. Nonetheless, a considerable amount of
both traditional and contemporary work in the philosophy of mind and
epistemology has rested on strong presuppositions about the sort of
form taken by representations of concepts and propositions in the
mind/brain. Consequently, philosophers now endorse a fairly diverse
range of positions regarding the way information is encoded in a cogni-
tive system. The first set of views I want to look at are those regarding
the structure of mental representations of concepts.

Philosophical views on the representation of concepts

Before beginning, I should say that my focus will be on 'lexical' con-
cepts, which are expressible in a given language with a morphologically
simple (monomorphemic) predicate term, such as DOG or HOUSE.1

These are to be distinguished from 'phrasal' concepts, which are
expressible only with morphologically complex predicates, like LARGE
BLUE DOG-HOUSE.2 As we shall see in our discussion of propositions, a
popular theory of the mind/brain regards lexical concepts as mental
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words which comprise the vocabulary of our 'language of thought.' But
regardless of our theory of prepositional structure, we can divide the
philosophical views on the structure of concepts according to their com-
mitment to an internal structure. Here, we need only posit two sub-
classes - those which require the representations of concepts to have
compositional structure and those which do not.

The empiricist account of concepts

The standard empiricist picture of concept structure assumes that most
lexical concepts are constructed out of more primitive, sensory-level
representations, which are initially provided by experience. Empiricism
takes a 'building-block' view of the structure and acquisition of basic
lexical concepts such as HOUSE and GRANDMOTHER and, thus, regards
them as having a rich internal structure. As Hume puts it,

Simple perceptions or impressions and ideas are such as admit of no distinc-
tion nor separation. The complex are the contrary to these, and may be distin-
guished into parts. Tho' a particular color, taste, and smell are qualities all
united together in this apple, 'tis easy to perceive they are not the same, but
are at least distinguishable from each other 3

Here, Hume regards the inner constituents of concepts to be primitive
sense impressions. Another empiricist tradition took the inner constitu-
ents to be a set of singly necessary and jointly sufficient conditions
which defined the concept's extension. This definitional view has been
all but abandoned by modern empiricists, most of whom feel it has been
seriously undermined by studies in cognitive psychology. 4 Rather than
viewing the building blocks of concepts as necessary and sufficient con-
ditions, most empiricists now regard them as prototypical features and
properties. On this version of empiricism, we represent concepts by rep-
resenting a set of common, prototypical primitive properties that are
possessed by most members of the concept's extension. Hence, on this
view, something qualifies as an instance of a concept if it possesses
some (but not necessarily all) of the prototypical features which collec-
tively form the representation of the concept in our mind/brain.

Given this account of concept structure, the empiricist can explain the
acquisition of new lexical concepts by supposing that they are built up
from primitive, sensory-level concepts or impressions. To help under-
stand this process of joining together atomic primitives to create lexical
concepts, empiricists have posited a variety of mental mechanisms, in-
cluding principles of association and imagination. This account of



250 Connectionism: Theory and Practice

concept structure further enables the empiricist to explain how we can
create concepts of things we have not experienced, such as unicorns.

Of course, if one assumes that lexical concepts are constructed out of
more primitive/sensory concepts (as does the empiricist), then one
must also assume that lexical concepts can be represented in the mind/
brain in a way that will support this compositional structure. In other
words, the standard empiricist account of concept acquisition requires
an encoding architecture sufficiently fine-grained to accommodate the
internal compositional form of concepts. This means that the architec-
ture must encode units or structures whose semantic interpretation is
more primitive and atomic than the lexical concepts for which they
serve as constituents. If, for example, our representation of APPLE is
thought to be made up of more primitive, sensory-level parts (e.g., a
certain colour and taste), then our cognitive architecture must have
structures corresponding to these parts, and it must be able to hook
them together in whatever manner is suitable for representing this con-
cept. If, on the other hand, the smallest unit of semantic significance
provided by the encoding architecture is no more primitive than the lex-
ical concept itself, then, clearly, the empiricist account of concept struc-
ture and acquisition will have to be abandoned. For the empiricist, the
underlying architecture must accommodate an internal, compositional
structure for concepts, and it must do so in a way that is compatible
with whatever assumptions empiricists make about the way various
primitives are combined and interact with one another.

The nativist (or rationalist) view of concepts

For the conceptual nativist, lexical concepts like HOUSE and APPLE are
not acquired or developed through learning but, instead, are 'triggered'
through causal interactions with the environment. 5 In other words,
non-sensory lexical concepts are thought to, in some sense, lie dormant
in the cognitive system until 'awakened' by the appropriate external (or
internal) stimulus. To quote Fodor, 'According to the nativist view the
story that empiricists tell about sensory concepts also holds for a wide
range of non-sensory lexical concepts: viz. that they are triggered but
unlearned.' 6

If this is so, then there is clearly no need for the nativist to require that
representations of concepts have a composite internal structure. If one
assumes that lexical concepts are simply triggered by environmental
stimulus, then there is no motivation for assuming the encoding archi-
tecture must capture smaller, more primitive, semantic units. Indeed,
any evidence against the claim that conceptual representations have
compositional structure is, ipso facto, evidence supporting nativism.
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Fodor, for example, adopts just this line of reasoning in defense of
nativism, arguing that 'lexical concepts are typically unstructured,
hence typically primitive, hence typically unlearned.' 7 For the concep-
tual nativist, then, the smallest unit of semantic significance which the
architecture must accommodate is no smaller than the entire lexical
concept.

While there are other philosophically relevant aspects of the issue of
concept structure, its implications for the empiricist/nativist debate is
the most important. As Fodor puts it, 'Roughly, what empiricists and
nativists disagree about is the structure of lexical concepts.' 8 If this is so,
then the success of cognitive models which put forth explicit accounts
of representation structure will have enormous implications for this
venerable philosophical debate. Before looking at such models, howev-
er, we must turn to the various ways philosophers have been equally
committed to certain accounts of the way we represent propositions in
the mind/brain.

Philosophical views on the structure of propositional representations

Before looking at the philosophical assumptions about the structure of
propositional representations, it should be noted that philosophers are
hardly in complete agreement over just what a proposition is. 9 Hence,
when we say a given state or structure is the representation of a propo-
sition, exactly what it is that is being represented is somewhat problem-
atic. Moreover, as we will soon see, the account of representation
structure philosophers endorse is often inspired by their views on what
propositions are. But for now, it will suffice to regard a propositions as
truth-conditions or states of affairs expressible by any ordinary declar-
ative sentence of a public language, such as 'Snow is white.' A proposi-
tional attitude is commonly regarded as a mental state - typically a belief
or desire - that is best described as an attitude towards a particular
proposition which is represented in the mind/brain. The way in which
propositions are represented in the cognitive system is the central ques-
tion of this section.

While there are a number of ways one might go about categorizing
philosophical views on this matter, I will opt for a classification scheme
similar to the one used above for categorizing theories of concepts. This
scheme, borrowed in part from Fodor, 10 divides philosophers accord-
ing to the degree of compositional structure they assume prepositional
representations to have. Here again, the central diagnostic question
used for classifying views will be, 'What is the smallest semantic unit
which the encoding representational structure must accommodate?' I will
suggest that answers to this question fall into three major classes, all of
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which are motivated by concerns over accounting for the semantics of
mental representations. My analysis will begin with what is arguably
the most popular of these views - the one assuming the most fine-
grained structure for prepositional representations.

The quasi-linguistic picture

Undoubtedly one of the most prevailing (if not the most prevailing) re-
cent accounts of mental processes is the view commonly known as the
'Language of Thought.' This position has been endorsed by authors
such as Hartry Field, Jerry Fodor, Gilbert Harman, William Lycan, John
Macnamara, Colin McGinn, Zenon Pylyshyn, Michael Devitt, Kim Ster-
elny, and countless others working in both philosophy and other areas
of cognitive science. 11 While there are many variations on the theme,
the basic idea is that thinking is, in many important ways, analogous to
speaking. 12 That is, entertaining a proposition involves the construction
of a complex thought by combining atomic mental units (often viewed
as concepts) in much the same way that speech involves the construc-
tion of complex sentences out of atomic words. On this view, just as
there are rules which restrict the way words can be combined to form
sentences of a natural language, so, too, there are rules which guide the
way concepts can be combined to form beliefs. The quasi-linguistic pic-
ture assumes that thought has a vocabulary and a syntax - just like
language.

For our purposes, what needs emphasizing is just how strongly the
quasi-linguistic view presupposes a certain account of representation
structure. According to this picture, propositions are represented in a
quasi-linguistic or sentence-like form with an internal syntactic struc-
ture. Just as the sentence 'Snow is white' is made up of the words
'snow,' 'is,' and 'white,' so, too, according to this view, the mental rep-
resentation of the proposition that snow is white is composed of mental
correlates of these words (i.e., concepts) such as SNOW and WHITE (as-
suming the copula itself need not be specifically represented) 'ar-
ranged' in the mind/brain in some appropriate way. And, of course,
this requires prepositional representations to have an internal composi-
tional structure which reflects the syntactic and semantic structure of
the proposition. Without this, the central idea behind the quasi-linguis-
tic view - viz. to account for the content of prepositional representa-
tions by appealing to a combinatorial semantics - would be lost. Hence,
propositions must be represented in a way that will accommodate this
internal structure. As Fodor puts it, 'LOT [Language of Thought] claims
that mental states ... typically have constituent structure.' 13 Consequently,
on this view, the atomic structural units which lend themselves to



Philosophy of Mental Representation 253

semantic evaluability must be smaller than the entire prepositional rep-
resentation. They must be concepts or mental words which can be con-
joined in certain syntactically appropriate ways to form prepositional
representations. Therefore, the quasi-linguistic view requires the encod-
ing architecture to accommodate representations more primitive (both
semantically and syntactically) than propositions, and it must do this in
a way that captures their syntactic role as constituents of propositions.

The monadic picture

At the next level of representational structure is a view I shall call the
'monadic' account. Here we find those philosophers who deny that the
representation of a proposition must have any sort of internal structure.
Authors endorsing this position are Tyler Burge, Fred Dretske, and
Brian Loan 14 As we noted above, the quasi-linguistic picture explains
the content of the representation by appealing to the content(s) of its
component parts. In this way the meaning of the representation is at-
tributable to matters concerning its internal make-up. And, of course,
this requires the representation to have an internal make-up. In contrast
to this, monadic theorists assume that the content of a propositional
representation stems not from its inner construction but from external
relational considerations that have nothing to do with the internal
structure of the representation. For example, Loar assumes that the se-
mantics of a representation is determined by its functional role in a rich
cognitive system made up of other representational states, along with
certain causal links to the world. Similarly, Dretske fixes the proposi-
tional content of a representation by appealing to its ability to indicate
certain aspects of the environment, combined with its influence on cer-
tain behaviours. Hence, to account for a propositional representation's
semantics, the monadic theorists appeal to the way a given representa-
tion interacts with other representations and features of the cognitive
system.

Regarding representation structure, the important point to note is
that, as far as monadic theorists are concerned, the internal structure of
the representation is completely irrelevant. As Loar puts it, the monadic
picture 'does not imply that the first-order states which realize the rele-
vant functional roles must themselves have an internal structure that re-
sembles the syntax of a language.'15 And Dretske notes that it 'is not...
its form or its shape, but the fact that it stands in certain relations' 16 that
is relevant to the representation's content. Of course, it is not necessary
for the monadic theorist to deny that the representation have any sort
of compositional structure or form. The crucial point, however, is that
this structure is irrelevant to its serving as a representation of a
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proposition. Thus, a proposition that we might express with a long and
complicated sentence of English could be encoded by a single, unstruc-
tured state or entity. What does matter for the monadic position - the
sort of structural requirement it imposes - is that the encoding architec-
ture be fine-grained enough to accommodate distinct, functionally dis-
crete, fully distinguishable representations of separate propositions.
That is, whereas the monadic view does not require constituents of
propositions to be represented in any way, the propositions themselves
must be fully represented by functionally discrete structures.

Hence, the smallest structural unit of semantic evaluability required
by the monadic view need not be smaller than the entire proposition. In
this way, the monadic account places a weaker constraint on cognitive
architecture than the quasi-linguistic view, because it makes no de-
mands on the internal make-up of the representation. Nonetheless,
it does require an encoding architecture that possesses enough
structure to represent different propositions as functionally distinct and
discernible states.

Structural holism

By far the most difficult set of philosophical views on representation
structure is that which I will call 'structural holism.' According to this
picture, distinct propositions do not require even monadic representa-
tion. It is important to distinguish this version of holism from other
forms, such as the sort of semantic holism that claims belief content
stems from other functionally separate beliefs that are distinctly repre-
sented (as we saw with the monadic theory). Structural holists allow
holism not just for the semantic nature of mental representation but for
the structural nature as well. At times, the writings of Daniel Dennett
suggest something like this, as do the writings of Robert Stalnaker and,
to a lesser extent, the work of Quine and Ryle. 17 The shared intuition be-
tween these authors is that the proper way to account for the semantic
properties of propositional representations is not by appealing to their
internal make-up, nor by focusing upon their functional relations with
one another but, rather, by appealing to certain dispositional states of the
cognitive system. Generally, these are determined by the system's be-
havioural profile along with whatever environmental stimuli serve to
bring about this profile. Adopting and summarizing Dennett's position,
Stalnaker puts the matter succinctly:

Belief and desire, the strategy suggests, are correlative dispositional states of
a potentially rational agent. To desire that P is to be disposed to act in ways
that would tend to bring it about that P in a world in which one's beliefs,
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whatever they are, were true. To believe that P is to be disposed to act in ways
that would tend to satisfy one's desires, whatever they are, in a world in
which P (together with one's other beliefs) were true ... Beliefs have determi-
nate content because of their presumed causal connections to the world. Be-
liefs are beliefs rather than some other representational state, because of their
connection, through desire, with action. 18

Hence, a strictly 'forward looking' dispositional account (i.e., one based
strictly on what the system will do) is supplemented by an appeal to the
causes of the dispositions in order to capture the content of mental
representations. 19

For present purposes, we need not worry about the various difficul-
ties with this account, such as its unabashed parallels with philosophi-
cal behaviourism, the apparent circularity stemming from defining
beliefs in terms of desires, and vice versa. In fact, structural holists have
offered compelling rebuttals to many of these concerns. 20 Instead, we
must concentrate on the sorts of structural demands this account makes
for propositional representations. If we assume that propositional atti-
tudes are to be captured by dispositional states, what kinds of con-
straints does this place on the way propositions are actually represented
in the cognitive system? The answer given by most holists is that we no
longer need to assume that individual propositions are represented by
structurally discrete states or components of the system. For the holist,
there is no one-to-one mapping from individual propositions to distinct
dispositional states. Recall that a central difficulty with the behaviour-
ist's treatment of dispositions was that, in fact, having a belief in certain
situations need not lead to any one particular behaviour, since the be-
haviour in question will typically depend on a large number of the
agents' other propositional attitudes. So, for example, we can assume
that having the belief that dogs have tails will, in certain situations, lead
to appropriate verbal behaviour only if we also assume that the cognizer
believes that it is appropriate to speak, desires to speak truthfully,
knows the proper words, and so on for a wide range of propositional
attitudes. Hence, if you want to be a dispositionalist, then you need to
recognize that there can be no mappings between dispositional states
and individual propositional attitudes. According to the structural ho-
list, the best one can do is to identify a given disposition with an entire
set of propositional attitudes. This, in effect, removes the sort of struc-
tural constraints on the cognitive system that the quasi-linguistic and
monadic theorists required for content ascriptions of propositional
attitudes. If the content of a given propositional attitude is dependant
upon all the other propositional attitudes taken together, then there is
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no need to assume a representation structure any more fine-grained
than that entire set.

Indeed, structural holists often go on to argue that, in fact,
propositions are not encoded by discrete structures. For example,
Dennett states,

There need not, and cannot, be a separately specifiable state of the mechanical
elements for each of the myriad intentional ascriptions, and thus it will not in
many cases be possible to isolate any feature of the system at any level of ab-
straction and say, 'This and just this is the feature in the design of this system
responsible for those aspects of its behaviour in virtue of which we ascribe to
it the belief that p. 21

Dennett does not maintain that it is false, strictly speaking, to attribute
propositional representations to such a system. But it is wrong to as-
sume that propositions are represented by distinct and specifiable states
which can be distinguished by appealing to the system's structural
make-up. Similarly, Stalnaker suggests we need not assume that prop-
ositions are represented in the mind/brain by discrete, structurally isol-
able states. Instead, we can assume that they are represented by one
holistic 'belief state' corresponding to a set of possible worlds. As he
puts it,

A state of knowledge or belief should not be thought of as something with
propositions as components at all... a system of beliefs need not be thought
of as a list of sentence-like items. Propositions are not components but char-
acteristics of a belief state, ways of distinguishing between the possible

22worlds that define a belief state.

Thus, what emerges from these theorists' portrayal of propositional at-
titudes is a picture of mental representation that does not require indi-
vidual propositions to be represented by structurally distinguishable
states. As with the monadic view, this account need not deny that the
encoding architecture involves some structure. But the salient structural
divisions, components, etc., need not correspond to different proposi-
tions represented by the system. Because the structural holist relies on
the organism's behavioural profile in certain environments to account
for the content of its propositional representations, he places relatively
weak demands on the encoding architecture. On this view, the smallest
unit of semantic evaluability that the encoding structure need accom-
modate is the entire set of stored propositions.
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A further dimension of representation structure

This completes my analysis of the different sorts of structural assump-
tions philosophers make regarding propositional representations. It is
worth noting that the more popular theories among philosophers as-
sume the finest grain of compositional structure. The more fine-grained
the analysis, the greater the number of philosophers whose theories re-
quire it. Hence, that cognitive models of representation structure are
more coarse-grained suggests that a considerable amount of philosoph-
ical theorizing is seriously misguided. But before looking at such cogni-
tive models, I need to make a further distinction that is important
for our understanding of both propositional and conceptual mental
representations.

The structure of a given representation is just one of its many proper-
ties. Another important property - although seldom discussed in philo-
sophical circles - is the degree to which a given representation is
activated or causally implicated in the cognitive system's internal pro-
cessing. For it is at least possible that we need to tell different structural
stories of a given representation when it is in different states of activa-
tion. That is, when active, the representation may take on a different
structural form than when it is inert. For example, a stored belief or con-
cept may lack a certain degree of compositionality which it (somehow)
comes to acquire when invoked during the system's processing. If the
encoding system entailed something like this, then activation level
must be included as an indispensable dimension of representation
form, and philosophical assumptions would have to be adjusted
accordingly.

To summarize this section, many philosophers make fairly strong as-
sumptions about the structure or form assumed by mental representa-
tions of both concepts and propositions. Regarding conceptual
representations, the question of internal structure is a crucial issue in
the empiricism-nativism debate, with empiricists arguing that repre-
sentations of concepts have a compositional form and nativists arguing
that they do not. Regarding prepositional representations, philosophers
again disagree on the amount of compositional structure which the en-
coding architecture must capture. Views on this matter are typically
motivated by the sort of theory put forth regarding the semantic prop-
erties of representations. Quasi-linguistic theorists endorse a composi-
tional semantics, so they require propositional representations to have
an internal structure resembling a sentence. Monadic theorists endorse
a functional/inferential-role semantics and, thereby, require a relational
structure between individually represented propositions. Structural ho-
lists adopt a dispositional account of semantics and, consequently,
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assume only a holistic encoding of information that need not admit the
structural discernibiliiy of propositions. Finally, I noted that representa-
tions might adopt different forms when in different states of activity,
and that systems with this feature might cross-classify philosophical
views on structure. We are now in a position to look closely at the con-
nectionist account of representation structure - both for concepts and
for propositions.

Connectionist Representations

It is important to begin by noting that, while connectionists do indeed
have a good deal to say about the way propositions and concepts are
represented, there is no single, unified account endorsed by all connec-
tionists. Just as we saw that there are many philosophical stories of rep-
resentation, so, too, in the connectionist paradigm, there are many
variations and versions which must be properly distinguished. Howev-
er, before looking at the specific details of these different styles of con-
nectionist representation, it will be useful to elaborate a bit on their
general features.

Some general aspects of connectionist representations

In some connectionist models individual units, or the joint activation of
several units, are assigned a fixed content by the system's (human) de-
signer. Here, units or activation patterns are designated to stand for cer-
tain prototypical properties of things (commonly called 'micro-features'
in connectionist parlance), lexical concepts, or even full-blown proposi-
tions. 23 However, it is well known that many current connectionist net-
works come to acquire their ability to perform various computations
through some form of learning. In many of these models, the learning
process itself bestows upon certain structures a representational status.
Generally, such networks have a set of input units, a set of output units,
and one (or more) intermediary layer of 'hidden' units, which can be
connected to other layers in a variety of ways. The acquired representa-
tions in such networks are typically 'stored' in the system's post-learn-
ing connection-weight configuration. When activated, however, many
modellers believe that individual representations are manifested by
patterns of activity in the hidden units. Since individual units can act in
analog fashion (taking a value anywhere between zero per cent and one
hundred per cent), a small number of units can produce a very large
number of different activation patterns and, thus, a large number of dif-
ferent representations. As we shall soon see, this way of forming repre-
sentations is quite unlike anything put forth in the past.



Philosophy of Mental Representation 259

One general issue which cannot be ignored is a vexing philosophical
worry about the validity of calling elements of such cognitive systems
representations. That is, a question often asked about such models is,
why, exactly, should anyone feel compelled to view the states or com-
ponents of these networks as representations of any sort whatsoever?
As we just noted, in some networks, the answer is easy: certain compo-
nents or states of the network are regarded as representations of partic-
ular concepts or propositions for the same reasons we regard structures
in more conventional systems as representations - namely, because we
just stipulate it to be so. However, besides the usual worries about 'de-
rived' and 'original' intentionality associated with this response, it is
also inappropriate for connectionist models where representations are
supposedly learned rather than stipulated. What is it about these latter
systems that warrants the assumption that they represent anything
at all?

Although this matter is seldom explicitly addressed by connection-
ists, I suspect their underlying motivation for calling certain features of
their model representations is much in the spirit of 'indicator' stories of
natural semantics, endorsed most recently by philosophers such as
Dretske, Stalnaker, Stampe, and others. 24 According to these philoso-
phers, a state's causal (or correlational) relations with aspects of the en-
vironment, perhaps in conjunction with certain of its functional
properties, serve to justify our calling it a representation. Similarly, for
connectionist networks where representations are learned, inner states
or structures are regarded as representing concepts or propositions in
virtue of their causes and the role they play in the production of the
model's output. One way to think of connectionist learning is to view it
as a way of modifying the system so that unusable internal states (e.g.,
hidden unit activation patterns) initially caused by certain inputs are
abandoned and replaced with more appropriate, functionally useful
states. Since these new states are brought about through learning, and
acquire a function of representing the input in an appropriate way, we
can (perhaps with some caution) say that such systems acquire repre-
sentations which they previously lacked.

Of course, something further needs to be said about just what it is for
an internal state, such as an activation pattern, to have a function of rep-
resenting the system's input 'appropriately.' Providing a plausible ac-
count of this is currently the research program for a number of
philosophers. While we need not dwell on this issue, it bears noting that
what matters in connectionist models is not just the relationship be-
tween the activation pattern and its cause but also the similarity rela-
tionship between the activation pattern and other activation patterns
produced by other inputs. During learning, a network will typically
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develop a way of organizing its representations so that different inputs
come to be represented as belonging to partitioned classes or groups
(which may themselves be hierarchically ordered into various sub-
groups). One common strategy for discovering these divisions is to do
what is commonly known as a 'vector analysis' on the hidden units. If
we plot the activation values of individual hidden units so that they
form different dimensions in an abstract state-space, then any given
pattern of simultaneous activity of all the units will correspond to a
point in that space. By looking at where in this space an input's corre-
sponding hidden unit activation is located, we can get a sense of the sort
of representational taxonomy the system adopts as the result of learn-
ing. An 'appropriate' activation pattern represents the input as belong-
ing to a class that can be exploited by the system during its various
computations. As Hinton puts it, 'The search for good representations
is then a search in the space of possible sets of partitions.' 25 A natural
way to think of this is to suppose that the network's internal units not
only represent the network's individual inputs but represent them as a
member of some class defined by the system's learning repertoire. In
this way, connectionist representations capture a notion of appropriate-
ness in terms of their similarity relation to other representations.

Because representations of this sort develop spontaneously through
learning, connectionism holds out the promise of providing cognitive
models that employ representations which acquire their semantic prop-
erties naturally, not simply by stipulation.

Examples of connectionist representation

Having discussed some general issues regarding connectionist repre-
sentations, we are now prepared to look at some specific examples. As
noted above, if we are to understand connectionism's potential bearing
on the philosophical views of representation, we must first demarcate
the different accounts of the form of representation put forth by these
sorts of models. Unfortunately, connectionists themselves have been
less than clear on this matter, and standard distinctions - such as that
between distributed and localist representation or between symbolic
and sub-symbolic networks - are somewhat ambiguous and cut across
important divisions. 26 A more helpful form of taxonomy classifies mod-
els in terms of (1) what it is that is supposedly being represented (i.e., mi-
crofeatures, concepts, propositions, or large bodies of information, such
as several propositions), and (2) how this is being done (i.e., through in-
dividual units, activation patterns of internal units, connection weights,
or series of activation patterns). We can see these distinctions captured
by the diagram in Figure 8.1.
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Figure 8.1: Types of Connectionist Representation

Only styles of connectionist representation that I take to have immedi-
ate philosophical significance are shown here, although many more
possibilities could easily be sketched in. Thus, there are four different
ways in which information can be encoded in connectionist devices that
are directly relevant to philosophy. 27 To properly understand these dif-
ferent types of models, it will be helpful to look at each in some detail.

Type (1): activation pattern = concept; single unit = microfeature

Networks of this sort rely upon individual units to represent low-level
properties and microfeatures, and overall activation patterns of several
units to represent concepts. For type (1) models, individual units may
have their content stipulated prior to learning or, alternatively, may
acquire their content as the result of learning. 28 Either way, a given con-
cept 'emerges' as its prototypical feature units are simultaneously excit-
ed- typically through some form of mutual activation.

A good example of a model of this sort is put forth by Rumelhart,
Smolensky, McClelland, and Hinton in their 'room-schema' model. 29 In
this network, individual units were taken to encode one of forty proto-
typical features of five different types of rooms. The connections be-
tween units were given either excitatory or inhibatory values,
depending on the relative frequency with which their corresponding
microfeatures are commonly correlated with one another. Thus, the fea-
ture 'sink' is positively linked with 'stove' but negatively linked with
'dresser.' By clamping on one or more individual units, the network set-
tles into an overall activation pattern through the mutual excitation and
inhibition of interacting units. Consequently, such patterns represent
prototypical bedrooms, kitchens, etc. An interesting feature of this mod-
el is its ability to 'merge' features and produce hybrid concepts. For ex-
ample, on one trial the units corresponding to 'bed,' 'sofa,' and 'ceiling'
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were clamped on. This produced a representation of a large and fancy
bedroom with a fireplace.

Type (2): activation pattern = concept; single unit uninterpretable

In this sort of model, concepts are again represented by activation pat-
terns of the network's internal units. However, for type (2) networks, in-
dividual units themselves do not admit of any semantic interpretation,
even when activated. As McClelland, Rumelhart, and Hinton state, in
models such as these, '[t]ypically the internal representations are dis-
tributed and it is the pattern of activity over the hidden units, not the
meaning of any particular unit that is important 30 ... The units in these
collections ... may have no particular meaning as individuals.'31 For the
most part, models of this sort develop their representations through
learning. Since only activation patterns are taken to have representa-
tional content, nothing in the system lends itself to semantic evaluation
when it is in its dormant state. In models such as these, conceptual rep-
resentations are commonly revealed through vector analyses that map
the similarities between different activation patterns of the network's
internal units.

One example of a model of this sort has been developed by Gorman
and Sejnowski.32 Their model acquired the ability to distinguish under-
water metal cylinders (mine imitations) from submerged rocks. It con-
sisted of a three-layered network with thirty-four input units encoding
echo frequencies, two output units (one for cylinders and one for rocks),
and fourteen hidden units. The network was trained, using back-prop-
agation, on a number of actual cylinder/mine echoes and actual rock
echoes. After training, a vector analysis of the network's hidden units
was performed, and it was discovered that their activation patterns are
partitioned in quite specific ways. Prototypical cylinder echoes were
clustered around one another in vector space, and prototypical rock
echoes were clustered around a different and significantly distant point
in vector space. This has led some to conclude that the network has de-
veloped a scheme for conceptually representing the different echo
sources. For example, Paul Churchland describes this model as follows:
'The training process has generated a similarity gradient that culminates
in two "hot spots" - two regions that represent the range of hidden-unit
vector codings for a prototypical mine and a prototypical rock.'33 If we re-
gard such regions in vector space as representing conceptual proto-
types, then activation patterns which fall within (or near to) such
regions instantiate the salient concept. However, unlike the representa-
tion of concepts in type (1) models, individual units need not stand for
any one particular sub-feature of that concept.
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Type (3): activation pattern = proposition; single unit uninterpretable

Networks of this sort take the activation pattern of hidden units to rep-
resent not concepts but full-blown propositions. As with type (2) net-
works, single units in these models need not have any semantic
interpretation when regarded individually. Hence, propositions are not
represented in a way that provides them with an internal (semantic)
structure. Instead, their form is fully determined by the ensemble of ac-
tivation values of hidden units within the network.

An example of a network that lends itself to this sort of interpretation
is produced by Ramsey, Stich, and Garon.34 This network can be viewed
as a question answerer trained to give 'yes' or 'no' responses to queries
about certain propositions. For example, the network was trained to
store and respond positively to such propositions as 'Dogs have fur'
and 'Fish have scales' but negatively to propositions such as 'Dogs have
scales.' After training, the network is presented with new propositions
to test how well it generalizes. The important point for our purposes is
that, although semantic components of propositions (such as 'Dog' and
'Fur') are explicitly encoded in the input units, they are not, in any way,
retrievable from the system's internal representations. The smallest unit
of semantic evaluability which can be assigned to the activated pattern
of hidden units is the entire proposition. Moreover, this sort of interpre-
tation is possible only when the system is actively processing informa-
tion. When dormant, not even this coarse-grained analysis is possible,
as information is stored holistically in the entire set of weights. Hence,
there is no way to locate individual propositions stored in the network's
architecture.

Type (4): series of activation patterns = proposition;
activation pattern = concept; single unit uninterpretable

There have been a number of recent attempts to develop connectionist
networks whose representations can accommodate some form of com-
positional semantics without merely implementing more traditional
approaches.35 As it turns out, this is quite difficult to do, and, at the
present, it is far from clear whether or not these efforts will prove suc-
cessful.36 Nonetheless, one strategy appears to hold some promise and
is gradually being employed in more and more networks. The approach
relies upon slight variations in activation patterns in order to capture
propositional structure. In such models, semantic units are represented
by activation patterns, which can then be combined in various ways to
encode molecular representations. However, the way the initial atoms
are hooked together, it is suggested, is syntactically unimportant - what
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matters is the exact value of the individual activation patterns that en-
code the atoms. According to this account, the syntactic role a particular
atomic unit (such as a concept) plays in the representation of a larger
structure (such as a proposition) is determined not by its relation to oth-
er atomic units but, rather, by the way it is represented by its own activ-
ity level. In this way, it is thought that slight variations in activity levels
can encode syntactic or conceptual roles played by concepts in different
propositions.

A nice example of a model developed along these lines is a network
designed by Elman to complete partial sentences.37 The model is a stan-
dard three-layered network, except it employs an added set of reitera-
tive connections between the hidden units. The effect is a short-term
memory, whereby the hidden units are presented not just with activa-
tion from the input units but also with their immediately preceding ac-
tivation pattern. Models of this sort are particularly adept at predictive
tasks, where they acquire the ability to detect patterns and regularities
in the temporal series of inputs. For example, this particular model -
trained on sequences of coded text - has the job of predicting new terms
in the sequence. As a result of training, types of hidden-unit activation
patterns come to correspond with lexical items such as nouns and
verbs. The representations are highly context-sensitive and vary slight-
ly with the input's position in a sentence. These variations are revealed
by checking the position of a term's hidden unit activation pattern in
state space whenever it (the term) plays a different role in a sentence. As
Elman puts it, "The location of each word in state space encodes not
only the lexical identity of the word, but also the position in the sen-
tence.'38 Hence, insofar as activation patterns can be thought to encode
lexical concepts, slight differences in the form of these conceptual rep-
resentations help capture the syntactic role they play in the representa-
tion of a given proposition. The result is that the representation of
individual concepts will vary in different contexts (e.g., in the complex
representation of MARY LOVES JOHN, the representation of MARY is
slightly different from what it is in the representation of JOHN LOVES
MARY). Elman suggests that, by appealing to this variance in conceptu-
al representation, connectionists can accommodate the apparent struc-
ture of propositional representations without adopting a 'Language of
Thought' form of syntax based on the arrangement of constituents.

Philosophical Implications of
Connectionist Representations

Now that we have had a look at some of the different accounts of repre-
sentation structure put forth by connectionists, we can explore the
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potential import of these different accounts for the various philosophi-
cal presuppositions discussed under PHILOSOPHICAL ACCOUNTS OF
REPRESENTATION.

Implications of type (1) representation of concepts

As illustrated above, type (1) models represent concepts by activating
an ensemble of distinct units, each of which encodes a certain prototyp-
ical property or microfeature that is constituent of that concept. Clearly,
if models such as these should prove successful, then the philosophical
moral to draw would be that the empiricist account of concept structure
has been largely vindicated. Recall that a critical issue - indeed, the crit-
ical issue according to Fodor - in the debate between empiricism and
nativism is the extent to which lexical concepts have internal structure:

The empiricist bets that there will prove to be lots of interesting reductions of
prima facie un-complex concepts (e.g. of de facto lexical concepts); whereas
the nativist bets that... we are not going to be able to display the internal
structure of most concepts because, simply, most concepts do not have any in-
ternal structure.39

If type (1) connectionist models turn out to be the right story of con-
cept structure, then it would be fair to say that the empiricist has won
this bet hands down. The reason is that for networks such as these, lex-
ical concepts such as KITCHEN are represented by structures construct-
ed out of sub-conceptual features in much the same way assumed by
empiricism and denied by nativism. If we represent our concepts in this
way - by activating constituent atoms which denote lower-level fea-
tures - empiricists like Hume and Locke could hardly ask for a better
model to capture their views.40 Hence, should it turn out that type (1)
models provide an accurate account of the way we represent concepts,
the empiricist presupposition of concept structure will be largely
vindicated.

Furthermore, type (1) models whose atomic units are linked through
some form of learning may provide some further insight into the actual
nature of empiricist concept acquisition. By providing us with new
principles of concept construction, these models may replace or justify
assumptions made by past empiricists about the ways primitive
concepts get hooked together to form lexical concepts. For example, if
the connections are adjusted in accordance with rules of a Hebbian
sort,41 then Hume's principles of association will be closer to the mark
than many have assumed.
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Implications of type (2) representations of concepts

The crucial difference between type (1) representation of concepts and
type (2) is that the former, but not the latter, relies on individual constit-
uent units to encode low-level microfeatures. While type (2) concepts
typically do have structural parts (i.e., several active units), these parts
are semantically vacuous - not just when regarded individually but
also in terms of the role they play in generating the concept. As Elman
points out, 'The patterns are expressed over the entire ensemble of hid-
den units ... one cannot usefully look at the activity of single units; they
do not even correspond to what one might call micro-features.'42 In
these models, there are no primitives which can be combined to form
lexical concepts. Hence, type (2) models lack the sort of internal seman-
tic structure which made type (1) models friendly to empiricism. If type
(2) models turn out to be the correct story of concept representation,
then empiricism's building-block account of concept structure and ac-
quisition would have to be abandoned. Since the activation patterns are
semantically unstructured, then, at least with regard to the structure of
the representation, something more akin to the nativist notion of con-
cepts would turn out to be the right account.

Yet, it is worth digressing a bit to note that it is far from clear that the
success of these models is something advocates of conceptual nativism
should hope for. For it is typically the case that models of this sort aquire
their internal representations through one or another learning strategy.
While such strategies lend themselves to a number of different interpre-
tations, nativist notions of 'triggering' or 'activating' dormant struc-
tures seem entirely inappropriate here. Instead, the system adjusts itself
in such a way that entirely new activation patterns are generated. It
makes no sense to view this process as one of activating or triggering
dormant states of the model.43

Are such networks empiricist or nativist? It seems that if we stick to
traditional conceptions of these views, they are neither. Since the repre-
sentations are semantically unstructured (i.e., they lack parts that can be
regarded as representations of properties), traditional empiricist ac-
counts of concept learning (which entail the conglomeration of primi-
tive concepts of properties) are fully inappropriate. But since the
network does learn new representations of concepts that are not already
possessed by the system, nativist construals of concept acquisition
appear to be undermined as well. One possibility is that the traditional
construal of the empiricist/nativist debate is based on invalid tacit as-
sumptions. Indeed, a further philosophical implication of models of
type (2) is that they may point to areas of unexplored epistemological
terrain. If models of this sort suggest that the original debate should be
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cast in new terms - terms that capture the salient differences between
information acquired through learning and information not so acquired
in a network - then the success of these models would require the over-
hauling of important areas of traditional epistemology.44

Implications of type (3) representations of propositions

In type (3) networks, propositions are represented by activation pat-
terns of hidden units, yet have no discrete form when the system is dor-
mant. Hence, there is an important sense in which models such as these
make the activity of the network a crucial element in determining the
form of a given representation.45 Since all the information eventually
acquired by the network is stored holistically throughout the connec-
tion weights between individual units, the very same structures are
used to preserve information about a variety of different things. As Mc-
Clelland and Rurnelhart put it, 'the traces of different mental states are
therefore superimposed in the same set of weights.'46 This prevents any
one-to-one mapping between stored propositions and particular struc-
tures or set of structures within the system. When considered as an inert
system, the smallest representational structure is the entire network,
whose semantical evaluability is never more fine-grained than is the
whole corpus of information on which it was trained. Consequently, the
only philosophical view that such a system will support when inactive
is the most coarse-grained level previously discussed: viz., structural
holism. Since there are no inert structures which encode individual con-
cepts, or even distinct propositions, neither the quasi-linguistic view
nor the monadic account can be accommodated. If models of this sort
turn out to be right, then philosophical accounts that require a quasi-lin-
guistic or monadic structure encoding discrete propositions would be
shown to be faulty, and holistic accounts would prove to be on the
right track.

On the other hand, if we consider type (3) models when they are ac-
tively engaged in information processing, matters appear quite differ-
ent. When active, one might argue that particular propositions can be
identified with the different activation patterns of the system's internal
units. These certainly are distinguishable from one another - in terms of
both their 'structural' and their causal properties. Hence, if the system
is active, there does seem to be a sense in which it can accommodate
something like the monadic picture of propositional representation by
appealing to the distinct activation states of the hidden units.

However, here again the connectionist account is not in complete
accord with the philosophical picture. For the monadic picture
typically assumes that propositional representations do have a dormant
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distinctiveness, that propositional representations can causally interact
with one another, and that more than one proposition can be invoked in
the processing at any given point in time. Just how these properties
might be captured in type (3) connectionist models is far from clear. At
the present, none of these features appear to be instantiated in models
invoking this type of representation. Hence, the success of these models
may provide only a very dubious victory for the monadic theorists.

While monadic theorists would be at least partially vindicated by the
success of type (3) models, the quasi-linguistic account would be virtu-
ally demolished in the wake of such success. Although the hidden unit
activation pattern of such networks is a structurally complex state, it
does not have a compositional semantics of the sort required by the quasi-
linguistic account. The nodes comprising the representation of the
proposition lend themselves to no straightforward semantic interpreta-
tion. Hence, if models of this sort turn out to be correct, then it looks like
the most popular philosophical theory of mental representation struc-
ture will have to be abandoned. There simply is nothing about the in-
ternal make-up of type (3) propositional representations that even
begins to look like the sort of internal structure required by the quasi-
linguistic account. Moreover, insofar as various theories of cognitive
processes have been based on the assumption that information is repre-
sented in distinct, sentence-like structures, these accounts will have to
be reworked or abandoned as well. For example, standard accounts of
how we perform logical inference, which assume propositional repre-
sentations serve as premises in deductive reasoning, could no longer as-
sume that sub-parts of these representations (i.e., concepts) can be
shared by these premises in any straightforward way. The reason is that
propositional representations in type (3) models do not have subparts, so
there are not any components which could be transitive (in any normal,
syntactic sense) between premises.47

Finally, the 'dual-aspect' (i.e., dormant = holistic; active = monadic)
of type (3) models spells trouble not just for sophisticated philosophical
theories of the mind but for common-sensical theories as well. Our folk-
psychology requires beliefs to be the sort of things which can have a
permanent, long-standing existence. Moreover, it assumes that particu-
lar stored beliefs need not have any role to play in certain episodes of
the behaviour production or inference. Yet, if the sort of holistic account
of belief storage presented by type (3) models is correct, these
assumptions cannot be jointly satisfied, and folk psychology will be
mistaken in its presuppositions about the way stored information is in-
voked during processing.48
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Implications of type (4) accounts of propositional representation

Last, but certainly not least, in our analysis of connectionist representa-
tion is the type (4) model. This type of model brings into play the idea
of invoking different representations of the same concepts to capture
certain structural relations. In this type of model, propositions do have
individual concepts as constituent parts. However, this feature does not
produce a straightforward implementation of the 'language of thought'
position because of the way individual concepts are represented in such
systems. In these models, the form of the representation of the concept
itself - not its causal/functional relations with other concepts - deter-
mines its syntactic role in the proposition. In other words, we have im-
plicitly 'stored' not one representation for a particular lexical concept
but several different representations (encoded by patterns correspond-
ing to different though nearby points in vector space), each of which ac-
counts for a given syntactic role. Thus, we do not, on this picture, have
a representation of BOY or APPLE but, rather, a cluster of representations
of BOY-qua-[ ], APPLE~qua-[ ], where the bracketed blanks are filled in
by the appropriate syntactic or conceptual role.

A further point worth stressing about type (4) models regards the sort
of constraints they put on the system's processing elements. A common
view among philosophers is that the mind is sensitive to only the syn-
tactic (structural) properties of its representations. Some have suggest-
ed that connectionist models abandon this picture, because they 'are
precluded from postulating mental processes that operate on mental
representations in a way that is sensitive to their structure.'49 If one
takes 'structure' to mean the way concepts are represented, type (4)
models illustrate not only that this point is false, but that it is radically
false insofar as models of this sort require more sensitivity to structure
than do conventional systems. The reason is that with type (4) models,
only slight structural differences - slight variations in activation pat-
terns - are relied upon to encode different syntactic roles. Moreover, the
situation cannot be alleviated by making the patterns more dissimilar
(by spreading their corresponding points further apart in vector space).
This is because these different patterns must be treated as semantically
alike (as standing for the same thing); otherwise the system would be
incapable of performing routine inferences. (Suppose, for example, the
network had two representations: (1) 'ALL A's ARE B's' and (2) 'ALL B's
ARE C's' and treated the two instances of 'B' as semantically - and not
just syntactically - different. In this case, the system would never draw
the obvious and valid conclusion that all A's are C's.) Thus, the different
patterns must be confined to a small region of vector space if they are
all to represent the same thing, yet they must be distinguishable by the
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system if they are to represent it in different roles. The end result is that,
far from ignoring the structural properties of representations, connec-
tionist models of this type must be extremely sensitive to such features
if the model is to represent appropriate propositions.

Although the details of this sort of account have yet to be fully
worked out, and many authors are skeptical,50 I will suppose for the
sake of argument that something like a type (4) model can be made to
work in order to explore the implications it might have for the way phi-
losophers think about the mind. Of these implications, the most obvi-
ous is the bearing it has on associationist theories of belief (as opposed
to concept) formation. For if the sort of account of mental processing
put forth by type (4) models is successful, this theory of the mind -
which has been abandoned by most philosophers and cognitive scien-
tists - will be provided with a strategy for vindication. Associationists
held that the basic principle of thought was the association of ideas and
concepts, determined (in part) by the relative frequency with which the
different mental units are correlated with one another. One of the most
popular arguments against this view was that mere associative rela-
tions could not capture the necessary syntactic relations required for
meaningful and coherent representation of propositions. Associations,
it has been argued, do not provide any syntactic arrangement of the con-
cepts which comprise a propositional representation. For example, as-
sociating one's JOHN concept with one's MARY concept and one's LOVE
concept does not provide a representation of JOHN LOVES MARY any
more than it provides a representation of MARY LOVES JOHN (or, for
that matter, LOVES JOHN MARY). However, if what gets associated are
the representations, JOHN-qua-agent, MARY-qua-patient, and LOVES-
qua-relation, then it appears we no longer need any further structural
organization to provide a meaningful representation of the proposition
'John loves Mary.' Insofar as the way these concepts get hooked togeth-
er is no longer relevant to their syntactic role, associative principles can
do all the work needed in combining concepts to form meaningful rep-
resentations of propositions.51

Of course, one serious drawback to this approach is that while type
(4) representation appears amenable to associationism, type (4) processing
does not, or at least not in any obvious way. Prima facie, there does not
appear to be anything like associationist relations at work among the
different representations in such models, although perhaps one might
focus on the similarity clustering in vector space and attempt to
develop something like an associationist account based on this (for
Hume, similarity was one of three principles of association). At this
point, the biggest problem is that no one has a clear sense of how
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models of this sort can be made to scale up to full-blown inference de-
vices that model sophisticated forms of cognition.

One final possible philosophical implication of type (4) models is
worth mentioning briefly. One of the great traditions of analytic philos-
ophy (dating back at least as far as Plato) has been that of conceptual
analysis - i.e., of trying to come up with a set of necessary and sufficient
conditions that capture our concept of such things as justice, virtue,
truth, rationality, etc. On one (quite naturalistic) reading of this enter-
prise, it is an attempt to develop an account of actual cognitive struc-
tures or representations literally stored in the mind-brain. If this
interpretation of conceptual analysis is correct, and if it should turn out
that the type (4) representational scheme is, in fact, the one we actually
use, then the traditional philosophical enterprise of conceptual analysis
would appear to be deeply misguided. The reason is not simply be-
cause our concepts do not consist of necessary and sufficient conditions
(as many have already argued), but, rather, because we do not have indi-
vidual concepts of these things. If all we have in the way of conceptual
representation of X (where X might be justice or truth or anything else)
is always X-QUA-some particular role, then there seems little reason to
suppose that there must be something in our heads which unites all of
these other than their proximity in vector space. In other words, if the
type (4) model of cognition is on target, then what we have instead are
clusters comprised of related (but conceptually different) representa-
tions - some of which will be captured by certain criteria, others by con-
textually different criteria; some of which will be undermined by some
counter-examples, others by very different counter-examples. In this
picture, trying to define THE concept of something would be hopeless,
primarily because there is no such thing.

Hence, type (4) accounts of representation form have important im-
plications for traditional work in both philosophy of mind and episte-
mology. With respect to the former, they provide associationism with
the potential means for avoiding criticisms regarding its inability to
capture syntactic regularities in thought. With respect to the latter, they
suggest there is reason to believe that a major program in traditional an-
alytic philosophy - that of conceptual analysis - might be doomed or, at
least, in need of serious rethinking.

Conclusion

Philosophers are leaning more heavily upon cognitive science than ever
before, and one of the most important points of contact is with respect
to the nature of mental representation. The goal of this essay has been
to explore the implications of one type of cognitive theory of
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representation structure - i.e., the connectionist account - for various
theories and topics in philosophy. While connectionism has already had
a major impact on cognitive science, I hope to have demonstrated the
different ways in which it might also motivate philosophers to rethink
many of their more popular assumptions about the character of mental
representation.52

Notes

11 adopt the format whereby mental concepts are denoted by fully capitalized
words.

2 This distinction is borrowed from Fodor (1981) and is not without its difficul-
ties. For example, as Fodor himself notes (261), it appears to be strongly de-
pendent upon one's particular natural language - a lexical term in one
language may be, in some cases, expressed by a phrasal construction in an-
other. Having noted such worries, I propose simply to ignore them, since my
concern is with sketching the philosophical tradition - not defending it. And
in this tradition, something like Fodor's distinction appears to be assumed
by most authors.

3 Hume (1959), 12.
4 See, for example, Smith and Medin (1981).
5 A slippery issue in this debate concerns the differences between concept

learning, concept acquisition, and concept triggering. Fortunately, we need not
dwell on this matter here, but simply note that what is clear is that whatever
the nativist account amounts to (whether we view it as concept triggering or
some other form of acquisition), one thing it surely will not be is acquisition
through the compounding of primitives. For further discussion of these mat-
ters, see Fodor (1981), Samet (1986), and Sterelny (1989).

6 Fodor (1981), 279.
7 Ibid, 298.
8 Ibid, 278.
9 See, for example, Cartwright (1966) and Stalnaker (1984) for discussion of

different conceptions of propositions.
10 Fodor (1985).
11 Field (1978); Fodor (1975), (1981), (1987); Harman (1973); Lycan (1981),

(1987); Macnamara (1986); McGinn (1982); Pylyshyn (1985). Indeed, anyone
who views thought as something akin to symbol manipulation (as do many
cognitive scientists) will be sympathetic to this picture. Until the advent of
connectionism, the language of thought hypothesis provided a happy meld-
ing point for philosophy and cognitive modelling.

12 Perhaps one of the earliest proponents of this view was Sellars (1968). See
also Harman's review of this work (1970).

13 Fodor (1987), 136.



Philosophy of Mental Representation 273

14 Burge (1986); Dretske (1988); Loar (1981), (1982).
15 Loar (1982), 633.
16 Dretske (1988), 104.
17 See Denntt (1978), (1987); Stalnaker (1984); Quine (1960), (1970); Ryle (1949).
18 Stalnaker (1984), 15,19.
19 To see why the supplement is needed, see Stalnaker (1984), 17-18.
20 See, for example, Stalnaker (1984), Chapter 1.
21 Dennett, (1978), 26.
22 Stalnaker (1984), 68, 71.
23 For a nice illustration of a model of this sort, see McCleliand's (1981) Jets and

Sharks model.
24 Dretske (1981), (1988); Fodor (1987); Stalnaker (1984); Stampe (1977).
25 Hinton (1987), 4.
26 For example, the 'distributed/localist' distinction fails to differentiate net-

works in which individual units have a semantic interpretation and those in
which they do not. The same can said for the 'symbolic/sub-symbolic'
distinction.

27 I view these distinctions as capturing very general styles of representation in
connectionist networks. I do not presume there to be well-defined classes of
models and admit there may be some overlapping or idiosyncratic networks
which do not fit neatly under any general heading.

28 For examples of the last sort, see Hinton (1987); Gorman and Sejnowski
(1988).

29 In Rumelhart and McClelland (1986b), Chapter 14.
30 In Rumelhart and McClelland (1986a), 344-6.
31 Ibid, 33.
32 Gorman and Sejnowski (1988).
33 Churchland (1989), 204.
34 Ramsey, Stich, and Garon (1990).
35 See, for example, Smolensky (1988); Hinton (1988).
36 See Fodor and McLaughlin (forthcoming) for a critique of these strategies.
37 Elman (1989).
38 Ibid, 24.
39 Fodor (1981), 283.
40 Of course, Locke or Hume would want the concept's sub-parts to be a bit

more sensory/primitive than the micro-features of Hinton and Sejnowski's
room schema model (i.e., I doubt if they would be happy with 'toaster' or
'floor-lamp' as primitives). But this does not affect my general point.

41 By this, I simply mean that the connection between two units is strengthened
if the units' activation is correlated.

42 Elman (1989), 18.
43 I suppose someone might claim there is a sense in which potential activation

patterns lie dormant in the pre-trained network. On this reading, however,
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the nativist position starts looking very uninteresting - any version of
nativism worth taking seriously will surely require something stronger
than this.

44 See Ramsey and Stich (forthcoming) for similar points regarding linguistic
nativism. See also Churchland (1989) for more on connectionism and the
overhauling of orthodox epistemology.

45 The same point holds for the representation of concepts in type (2) models.
46 Rumelhart and McClelland (1986b), 176.
47 Fodor and Pylyshyn (1988) regard this point as amounting to a reductio of

type (3) representations.
48 See Ramsey, Stich, and Garon (1990) for a detailed argument for this

conclusion.
49 Fodor and Pylyshyn (1988), 24.
50 See, for example, Fodor and Pylyshyn (1988) Part 2, Sec. III; or Fodor and Mc-

Claughlin (forthcoming). The main complaint is that this sort of representa-
tional scheme would lead to a 'grotesque explosion of primitives,' since the
number of different arid distinct vector points would have to be as great as
the number of conceptual roles each concept could fill. This would not be too
bad, except, as these authors urge, the notion of conceptual role needs to be
quite rich in order to work. So, for example, one would need a distinct encod-
ing of not just JOHN-QUA-PATIENT but also of JOHN-QUA-PATIENT-OF-
HITTING, JOHN-QUA-PATIENT-OF-LOVING, JOHN-QUA-PATIENT-OF-
CAREFUL-OBSERVATION, and so on for all the thoughts once can entertain
about John. To see how connectionists might try to deal with these worries,
see Cottrell (1985).

51 Peter Godfrey-Smith and Mike Kremer have suggested to me that this is all
still very language-like if we take as our model those languages (like Latin)
in which syntax is captured not by concatenation relations between words
but, rather, the word's conjugation and its adjoining pronoun. If this is so,
then type (4) models may still be a sort of Language of Thought account, but
one that abandons traditional construals of compositionality and is compat-
ible with associationism.

52 Much thanks to Gary Cottrell, Jeff Elman, Peter Godfrey-Smith, Mike Krem-
er, Kim Sterelny, and especially Steve Stich for a number of helpful comments
and suggestions.
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9
Connectionism and the Computational

Neurobiology of Curve Detection
Steven W. Zucker, Allan Dobbins, and Lee Iverson

The Dilemma of Curve Detection

One of the pillars on which modern theories of vision are based is the
discovery that there exist neurons in the visual cortex with receptive
fields tuned for orientation (Hubel and Wiesel 1977). Such neurons are
typically interpreted as 'curve detectors,' and it is widely held that their
responses are then simply fed forward to enable more abstract spatial
pattern vision. Similar notions pervade other areas of vision as well, for
example , motion and stereoscopic perception and can be taken to de-
fine the first paradigm in computational vision (Zucker 1986, 1991).

This feedforward view of curve detection into pattern vision is se-
ductive in its simplicity; however, it stands at odds with much of what
is otherwise known about vision and gives rise to more dilemmas than
it resolves. For example, the initial measurement of orientation infor-
mation is broadly tuned, which suggests the averaging necessary to
counteract retinal (sensor) sampling, quantization, and noise. However,
the end result of curve detection is unexpectedly precise: comers can be
distinguished from arcs of high curvature, and nearby curves can be
distinguished from one another to a hyperaccurate level, even though
they might pass through the same receptive field.

An analogous dilemma exists for computer vision systems, even
with the spectacular numerical precision of which computers are capa-
ble: quantization and noise imply smoothing, but smoothing blurs cor-
ners, endpoints, and nearby curves into confusion (Zucker 1986). At the
foundation is a chicken-and-egg problem: If the retinotopic points
through which a curve passes, together with the locations of disconti-
nuities, were known, then the actual properties of the curve could be in-
ferred by a 'fitting' or interpolation process. But initially they are not
known, so any smoothing inherent in the inference process is
potentially dangerous. In fact, even determining which points the curve
passes through is a difficult problem (which we call the trace inference
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problem) and may be the first segmentation task with which vision is
confronted.

Two Stages of Curve Detection

We have studied the trace and curve inference problems and have dis-
covered a computational solution involving decomposition into a first
stage, during which a local and coarse description of the curve is com-
puted, followed by a second stage, during which the global and precise
properties of curves are computed. While the first of our stages has a
rather similar character to the kinds of networks studied by artificial
neural-network researchers, the second one does not (Figure 9.1). At a
more subtle level, however, our approach differs significantly from pre-
vious ones in that no attempt is made to match curves directly against
the image or even against measurements (i.e., 'curve operators') evalu-
ated over the image. Instead we stress the organizational point that a
stable, reliable, but coarse description should be computed as an inter-
mediate between the image (measurements) and the global curves. A
particular intermediate representation - the discrete tangent field - is
proposed. It is computed by a global network that minimizes a varia-
tional form rather different from those normally proposed.

The second stage of the algorithm synthesizes the global curves
through the tangent field. The novel idea behind our approach is to re-
cover the global curve by computing a covering of it; that is, a set of ob-
jects whose union is equivalent to the original curve, rather than
attempting to compute the global curve directly. The elements of the
covering are unit-length dynamic splines, and global curves are recov-
ered to sub-pixel accuracy.

The Model of Curve Detection

Orientation selection can be viewed as the inference of a local (low-
order) description of a curve everywhere along it, and we postulate ori-
entation selection as the goal of our first stage. In the second stage, glo-
bal curves are inferred through this local description. The various
stages of our process are shown in Figure 9.1 and are expanded below.
Figure 9.1 illustrates the different stages of curve detection. In the first
stage, a reliable, but coarse, description (tangent field) of the local struc-
ture of curves is computed, while global structure is computed in the
second. This is illustrated for the small fingerprint image (Figure 9.1a);
note the smooth curves and discontinuities around the 'Y' in the centre.
The first stage is broken into two steps. In the first step, initial (nonlin-
ear) measurements are performed to estimate what the local curvature
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Figure 9.1a

Figure 9.1b
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Figure 9.1c

Figure 9.1d
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Figure 9.1e

and orientation might be (Figure 9.1b). In the second step these initial
measurements are refined by a relaxation labelling process and (Figure
9.1c) shows the final tangent field after two iterations; note that most of
the spurious initial responses have been eliminated. There are also two
steps in the second stage, first the construction of a potential distribu-
tion from the entries in the tangent field (Figure 9.1e), and, second, the
covering of the global curve by a family of short curves, or snakes (Fig-
ure 9.1d). (After Zucker et al., 1989.) We now elaborate each of these
different steps.

Stage 1: inferring the tangent field

Formally, orientation selection amounts to inferring the trace of the
curve, or the set of points (in the image) through which the curve
passes, and its (approximate) tangent at those points. While this cap-
tures standard views of orientation selection, we extend the
requirements of the first stage to include estimates of curvature at each
point along a curve, except for the singular (or discontinuous) ones
(Zucker 1986). For simplicity, we refer to the total of such information
as the tangent field and note that, since the initial measurements are



282 Connectionism: Theory and Practice

discrete, this will impose constraints on the (inferred) tangents, curva-
tures, and discontinuities (Parent and Zucker 1988).

By elaborating the tangent field to include differential-geometric in-
formation through the second order, as well as discontinuities, one can
appreciate the fact that computing the tangent field is rather a more
involved task than just convolving operators. So this first stage of curve
detection is in turn modelled as a two step process:

(1) Step 1.1. Initial Measurement of the local fit at each point to esti-
mate orientation and curvature. These estimates derive from a
model of simple cell receptive fields instantiated at multiple
scales and orientations at each image position. The model is
nonlinear and derives from a subfield partition and then recom-
bination which guarantees that certain structural preconditions
are satisfied (Iverson and Zucker 1990). The result eliminates
many of the false positive responses that plague other operators.
Curvature estimates are then derived from nonlinear differenc-
es between orientation measurements at different scales, and
they are described below. Overall, we propose that endstopped
neurons in the visual cortex represent joint hypotheses about
orientation and curvature, and that their firing rate along an
(endstopped) orientation hypercolumn represents how well
these hypotheses match the local image structure. However,
such local measurements are inherently inaccurate (for exam-
ple, broadly tuned), so we require

(2) Step 1.2. Interpretation into an explicit distributed representation
of tangent and curvature by establishing consistency between
the local measurements. There are two notions that must be de-
veloped here: (1) precisely what is meant by 'consistency'; and
(2) physiologically how it might be achieved.We propose to de-
fine consistency within the theory of relaxation labelling, one way
of formulating abstract 'neural networks' expanded below, with
the connections (or compatibilities or strengths of 'synaptic in-
teractions') derived from differential geometry. To illustrate,
consider an arc of a curve, and observe that tangents to this arc
must conform to certain position and orientation constraints for
a given amount of curvature; we refer to such constraints geo-
metrically as cocircularity (Figure 9.2a). Discretizing all continu-
ous curves in the world that project into the columnar space of
coarse (orientation, curvature) hypotheses partitions these
curves into equivalence classes (Parent and Zucker 1989; Zucker
and Iverson 1988). Figures 9.2b-2c illustrate compatibilities
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Figure 9.2a: The geometric relationships necessary for defining the compatibilities be-
tween two label pairs at nearby points i= (xi, yi) and j = (xj,yj).

between coarse (orientation, curvature) hypotheses at nearby
positions. Eight distinct orientations and seven curvatures are
represented, and three examples are shown.The magnitude of
the interactions varies as well, roughly as a Gaussian superim-
posed on these diagrams. The values were obtained by numeri-
cally solving a six-dimensional closest point problem (Zucker et
al. 1988). Physiologically, these projective fields could represent
inter-columnar interactions implemented by pyramidal neu-
rons. (After Zucker et al., 1988.)

We now expand on some of these notions; the reader is referred to the
literature for more detailed, technical presentations.

Physiologically plausible curvature measurements

The problem of estimating curvature has concerned researchers in
computer vision and spline approximation theory for decades (Rosen-
feld and Kak 1982). The difficulty derives from the fact that, formally
speaking, curvature involves second derivative functions. Given an es-
timate of a curve that is noisy, or even an estimate of the trace of a curve
that is noisy, attempts to estimate curvature by either difference
approximations or by fitting symbolically differentiated (e.g.,
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Figure 9.2b: The labels which give positive (white) and negative (black)
support for a diagonal orientation with no curvature.

Figure 9.2c: Positive and negative support for a small curvature class.
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Figure 9.2d: Positive and negative support for the maximum curvature class.
polynomial) functions have not fared well. The process attempted in
both cases enhances the noise and masks the curvature signal.

We have developed a very different approach to estimating curva-
ture, based on the geometrical interpretation of curvature as 'deviation
from straightness' or, technically speaking, the rate at which the curve
pulls away from its tangent.

We implement the idea in a physiologically plausible way, which has
led us to a novel insight regarding the function of cells in the visual cor-
tex. The model is based on the observation that there are simple cells
whose receptive field size differs as a function of cortical layer. In par-
ticular, Layer VI of cat primary visual cortex contains cells with recep-
tive fields notably longer than those in the laminae above it (Gilbert
1977). Now, if we let RS denote the response of a short simple cell (or,
more precisely, the response of a cell with a short receptive field) and RL

denote the response of a long simple cell, with receptive fields sharing
orientation preference and centred at the same retinal location, then
their 'difference' is related to curvature. To illustrate, suppose the stim-
ulus is a straight curve. Then both cells will be responding strongly,
since the stimulus passes supportively through both receptive fields,
and their 'difference' is zero. Curvature is zero for straight lines. Now,
consider a curve with high curvature. It will stimulate the small cell to
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some extent, but not the large one, so their 'difference' will be large.
Curvature is large.

More precisely, letting ( ) denote a rectifying function (equal to its
argument when positive and zero otherwise), the curvature response
(RK) is modelled by:

where cS and cL are positive constants that normalize the area difference
between the receptive fields. By varying the model parameters one can
vary the curvature response of model instances. For example, the sym-
metry of the components determines the curvature sign selectivity, and
the relative size and gain determine the preferred curvature and curva-
ture tuning breadth (see Dobbins et al. 1988a, 1988b).

A rather intriguing connection emerged between this model and an-
other common property of visual cortical neurons: end stopping, or se-
lectivity for the length of an oriented stimulus. Selectivity for length
would be signalled by a maximal response to a stimulus of a given
length and a decrease in response for stimuli of different lengths. How-
ever, for such tunings to be comparable, they ought to decrease to the
same level, ideally to zero or the resting level if the cells are actually sig-
nalling 'endpoints.' But this is not observed physiologically. The
amount of firing drops off different amounts, usually to an intermediate
value (say to 60 per cent of the maximum, or to 40 per cent). Thus it
seems unlikely that these neurons are exactly detecting stimulus length
or endpoints. Rather, a different interpretation is required, and one
which is consistent with such broad and variable tuning characteristics

We submit that endstopped neurons are coding coarse curvature,
and, in Dobbins et al. (1987) we develop a computational model for
endstopping and show how it leads to quantitative predictions (now
verified) about the response of endstopped simple (ES) neurons to
curved stimuli. This provides the (nonlinear) operators for our initial
curvature measurements.

To summarize, then, at each of a discrete number of orientations a
small number of orientation selective instances of simple cells are com-
bined to define five (say) discrete curvature classes - two on either side
of the zero curvature class. The four curved classes are obtained from
endstopped instances and the zero curvature estimate from a nonend-
stopped instance of a simple cell. Typical results above noise are shown
in Figure 9.1b; although they convey a rough idea of what the curve
structure is, there are both responses where there is no curve and am-
biguous (multi-valued) responses where there is a single curve. We con-
tend that no local operator can solve these problems in general, and,
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further, that a spatially-interactive process can. In the next subsection
we sketch a computational framework within which such a process can
be posed.

Orientation selection network

Given the initial measurements, we now use a relaxation labelling sys-
tem to effectively impose a coarse second-order model for the curve
around each putative tangent and then to select those that minimize a
certain function over all responses. The result is a network that models
something like the interactions between endstopped and nonend-
stopped simple cells in the visual cortex.

Relaxation labelling

Relaxation labelling is an inference procedure for selecting labels at-
tached to a graph according to optimal (symmetric) or variational
(asymmetric) principles. Think of nodes in the graph as image posi-
tions, phrase edges in the graph as linking nearby image positions, and
the labels as indicating possible discrete (orientation, curvature) pair-
ings. Formally, leti = (xt,yt) I denote discrete coordinate positions in
the image I, and let denote the set of labels at position i. The labels
at each position are ordered according to the measure such that 0

pi ( ) 1 and

for all i. (Think of p( ) as the firing rate for the (possibly endstopped)
neuron coding label = (particular orientation, particular-curvature).)
Compatibility functions ri,j are defined between label at posi-
tion i and label ' at position j such that increasingly positive values rep-
resent stronger compatibility. It was these compatibilities that were
illustrated above, and which were derived from the differential geome-
try of curves. The abstract network structure is obtained from the sup-
port that label , obtains from the labelling on it's neighbours Neigh (i);
in symbols,

The final labelling is selected so that it maximizes the average local sup-
port:



288 Connectionism: Theory and Practice

Such a labelling is said to be consistent (Hummel and Zucker 1983). An
iterative, gradient ascent algorithm for achieving consistent labellings
is presented in Mohammed, Hummel, and Zucker 1983 and Parent and
Zucker 1985a. We now simply remark that such 'computational energy'
forms have become common in neural networks and observe that Hop-
field (1984) networks are a special case, as are polymatrix games, under
certain conditions (Miller and Zucker 1991).

Physiological interpretation

Such relaxation interactions can be viewed physiologically as excitatory
and inhibitory interactions between endstopped cells at nearby posi-
tions (adjacent hypercolumns) and can be used as follows. Since curva-
ture is a relationship between tangents at nearby positions, two
tangents should support one another if and only if they agree under a
curvature hypothesis, and co-circularity provides the means to measure
such support. In addition, two tangents that disagree with the curva-
ture estimate should detract support from one another. Physiologically
the relaxation interactions might be viewed as the computation imple-
mented by pyramidal neurons as they combine information from adja-
cent (endstopped) orientation hypercolumns. Since only two to three
iterations are required for convergence (empirically), it is natural to pro-
pose that these are accomplished by the forward- and back-projecting
pyramidal neurons connecting areas V1 and V2 (Zucker et al. 1989), if
not entirely by local circuits within V1.

One specific model of the physiology could be as follows: initial ori-
entation estimates are obtained by the small (layer four) simple cells in
V1; the difference required for curvature estimation can be built up
from a layer six to layer four back projection, and the first iteration of
the relaxation process can be implemented by a pyramidal neuron with
dendritic inputs from nearby (endstopped) orientation hypercolumns.
Such neurons project to V2, where a similar computation takes place;
the backprojection to V1 then provides a final iteration. The tangent
field is represented by those neurons whose firing rate is maintained,
with tangent corresponding to preferred orientation and curvature cor-
responding to percentage endstopping.

Similar ideas can be applied to texture, suggesting a difference be-
tween texture flows, or those texture patterns with an orientation struc-
ture, and texture fields, for example, 'salt-and-pepper' patterns (Hel Or
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and Zucker 1989), and such differences may well correlate with physi-
ological notions of 'cytochrome oxidase blobs' (Allman and Zucker
1991). The extension into three dimensions requires more sophisticated
differential geometry (see Sander and Zucker 1990). Also, application to
laser rangefinder imagery is very successful (Ferrie et al. 1990).

Discontinuities

One of the subtle points regarding curve detection raised at the begin-
ning of this article is the handling of discontinuities; if too much
smoothing is introduced by an interpolation (or regularization) process,
then discontinuities are also smoothed over. Our network suggests a
novel way to represent discontinuities in orientation (corners) as multi-
ple tangents assigned to the same position. Mathematically this is relat-
ed to the Zariski tangent space, and biologically it suggests why
orientation is explicitly represented in a column of neurons rather than
implicitly in terms of two orthogonal 'basis neurons.' To carry this point
one step further, multiple values of curvature at a point, or two end
stopped cells with different degrees of end stopping but the same ori-
entation preference code bifurcations, as illustrated in Figure 9.1. More
generally, this idea of multiply-valued representations carries over to
stereo (Lappin, Norman, and Zucker 1991) and motion edges and trans-
parency (Zucker, Iverson, and Hummel 1990).

Inferring a covering of the curve

The second stage is much more difficult to define in classic neural net-
work terms and has typically been approached rather differently. Since
the tangent is the first derivative of a curve (with respect to arc length),
the global curve can be recovered as an integral through the tangent
field. Such a view typically leads to sequential recovery algorithms
(e.g., Kass and Witkin 1987). But these algorithms require global param-
eters (e.g., total length), starting points, and some amount of topological
structure (i.e., which tangent point follows which); in short, they are bi-
ologically implausible. In contrast, we propose a rather different ap-
proach in which a collection of short, dynamically modifiable curves
('snakes' in computer vision; see Kass, Witkin, and Terzopoulos 1988)
move in parallel.

Recovering the global curve by computing a covering of it; that is, a
set of objects whose union is equivalent to the original curve, avoids the
prerequisite global problems. Let the elements of the covering be unit-
length dynamic splines, initially equivalent to the elements of the tan-
gent field, but which then evolve according to a potential distribution
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constructed from the tangent field. The evolution takes two forms: (1) a
migration in position to achieve smooth coverings; and (2) a 'growth' to
triple their initial length.

Again, there are two conceptually distinct steps to Stage 2 of the
algorithm:

(1) Step 2.1. Constructing the Potential Distribution from the discrete
tangent field. Each entry in the tangent field actually represents
a discretization of the many possible curves in the world that
could project onto that particular (tangent, curvature) hypothe-
sis. Now these pieces must be put together. Assuming the
curves are continuous but not necessarily differentiable every-
where, each contribution to the potential can be modelled as a
Gaussian (the Wiener measure) oriented in the direction of the
tangent field entry. The full potential distribution is their point-
wise sum; see Figure 9.1 e.

(2) Step 2.2. Spline Dynamics. The discrete entities in the tangent
field are converted into unit splines initialized in the valleys of
the potential distribution. They evolve according to a variation-
al scheme that depends on spline properties (tension and rigid-
ity) as well as the global potential (Figure 9.1e).

The potential distribution is created by adding together contribu-
tions from each element in the tangent field; see Figure 9.1e. Changing
the representation from the tangent field to the potential distribution
changes what is explicit and what is implicit in the representation, and
local information is combined into global information. In Stage 1 there
were discrete coarse entities; now there are smooth valleys that sur-
round each of the global curves, with a separation between them. The
'jaggies' imposed by the initial image sampling have been eliminated,
and interpolation to sub-pixel resolution is viable.

To recover the curves through the valleys, imagine creating, at each
tangent field entry, a small spline of unit length oriented according to
the tangent and curvature estimates. Figures 9.3a-d are an illustration of
the splines in motion. Initially, each spline is born at a tangent field lo-
cation with unit length. Then, according to the potential distribution
shown in Figure 9.1e, the splines migrate in position (to find minima in
the distribution) and in length, so that they overlap and fill in short
gaps. At convergence, the length of each spline has tripled. (After David
and Zucker 1990.)

Since each spline is born in a valley of the tangent field potential dis-
tribution, they are then permitted to migrate to both smooth out the
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Figure 9.3a

Figure 9.3b
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Figure 9.3c

Figure 9.3d
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curve and to find the true local minima. The union of these local splines
is the global cover. But the splines must overlap, so that each point on
every curve is covered by at least one spline. We therefore let the splines
extend in length while they migrate in position, until they each reach a
prescribed length. The covering is thus composed of these extensible
splines which have grown in the valleys of the tangent field potential.
Their specific dynamics and properties are described more fully in
Zucker et al. (1988); David and Zucker (1990).

It is difficult to interpret these ideas physiologically within the classi-
cal view of neurons, in which inputs are summed and transformed into
an output train of action potentials. Dendrites simply support passive
diffusion of depolarization. Recently, however, a richer view of neu-
ronal processing has emerged, with a variety of evidence pointing to ac-
tive dendritic computation and dendro-dendritic interaction (Schmitt
and Worden 1979). Active conductances in dendrites functionally
modify the geometry, and dendro-dendritic interactions suggest that
the output transformation is not uniquely mediated by the axon. Taken
together, these facts imply that patterns of activity can be sustained in
the dendritic arbor, and that this membrane could be the substrate of
the above potential distribution computations.

The large constructed potential distributions may bear some resem-
blance to the large receptive fields observed in areas V4 and IT (Maun-
sell and Newsome 1987). While any such relationship is clearly
speculative at this time, it should be noted that they have two key sim-
ilarities: (1) extremely large receptive fields (potential distributions)
have been created, but they maintain about the same orientation selec-
tivity as in V1; (2) their structure can change. We have stressed how
structure is controlled by upward flowing information, but it should
also be modifiable by 'top-down' attentional influences as well (Maun-
sell and Newsome 1987; Moran and Desimone 1985). Attention could
easily 'gate' the tangent field entries at the creation of the potential.
Mathematically, all the information required for implementing a theory
of shape also seems to be available (Kimia, Tannenbaum, and Zucker
1990; 1991).

Conclusion

Curve detection provides what might be thought of as a slice through
the visual system. It begins with local operations resembling those
found in receptive; fields and ends with global operations resembling
those required for supporting pattern recognition. We attempted to de-
velop (1) an abstract computational model of this process to elucidate
the true complexity of curve detection and (2) a computational
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implementation to illustrate its engineering competence. From a biolog-
ical perspective, we attempted to elucidate the function of known corti-
cal circuits, and, finally, from a neural network perspective, we
attempted to illustrate a style of analysis involving constraints from
both biology and computation.

Two rather different conclusions obtain. First, while much of the em-
phasis in neural networks and connectionism is on learning, we illus-
trated the power of actually deriving the structure of networks from
abstract problem considerations: in our case, it led to the importance of
curvature and a biologically plausible mechanism for computing it.
This mechanism has provided new insight into understanding the
structure of visual cortex and, in particular, has led to one of the few
computational predictions that has actually been physiologically
verified.

The second conclusion is more subtle in its statement. While the two
stages of our curve detection algorithm seem remarkably different phe-
nomenologically, and are even expressed in rather different mathemat-
ical terms, they share a common expression as variational forms.
Perhaps this is the proper way to unify abstract problem formulations
with the intricacies of neurobiology.
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10
PDF Learnability and Innate

Knowledge of Language
David Kirsh

Introduction

It is widely assumed that PDP learnability has some bearing on ques-
tions of innateness. If a PDF network could be trained to make correct
judgements of grammaticality, for instance, it seems to follow that in-
nate knowledge of grammar is not necessary for language acquisition.
The reason, quite simply, is that the learning rules used in PDP learning
-whether backpropagation or related gradient descent methods-are
general, domain independent methods. They are what AI theorists call
weak methods. Hence in teaching a system to make correct judgements,
we seem to have an existence proof that there is enough information in
the stimulus to permit learning by inductive means alone. It is this idea,
and the methodological implications that flow from believing it, that I
wish to explore here.

The problem I have with this argument is that to discover a network
that will learn successfully, designers must choose with care the net-
work's architecture, the initial values the weights are set to, the learning
rule, and the number of times the data set is to be presented to the net-
work-this latter parameter effects the smoothness of the estimated
function. If such parameters are not controlled for, successful learning
is extremely improbable. In thoughtful modelling, these parameters are
chosen on the basis of assumptions about the nature of the function the
system is to learn. That is, on the basis of assumptions about the task
and the task domain. Prima facie, then, although the learning mecha-
nism operating on data is a general one, the success of this mechanism
depends equally on a set of antecedent choices that seem to be
domain specific.

If these assumptions are genuinely domain specific we ought to reject
PDP learnability as proof of inductive learnability. Learning can be
viewed as a controlled process of moving from an initial state of knowl-
edge about a domain to a more advanced state. The hallmark of true

297
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inductive learnability is that the initial state contains zero knowledge of
the domain: all domain knowledge is acquired through learning. To ac-
cept PDP learnability as a sound non-innatist argument, then, requires
accepting that the assumptions made in designing PDP experiments are
not domain specific.

The idea that assumptions are either domain specific or domain inde-
pendent, and that the difference is not merely one of degree or merely
in the eye of the beholder, plays an important role in discussions of lan-
guage learning. It is Chomsky's belief, as well as that of many genera-
tive linguists who distinguish themselves from Chomsky, that children
enter the language learning context 1 with biological constraints on the
kind of grammars they will conjecture (learn). It is not an accident of
particular social conditions that humans have the type of languages
they have, nor a consequence of more general constraints on terrestrial
communication. Human languages are the product of a specialized
neuro-cognitive organ, whose development to full functionality is
much like the prenatal development to full functionality of the liver and
kidneys or the postnatal development to full functionality of flying in
birds, a matter of powerful biological constraints. Change and improve-
ment, though dependent on the environment, is strongly predeter-
mined. The whole process is far more like a progressive tuning-the
progressive specialization of a dedicated organ-than an enriching pro-
cess where a more general purpose organ, largely nonspecific, is con-
verted by powerful learning and development processes into a
computational device able to correctly assign meaning to linguistic
structures.

The standard view of the PDP approach is that it represents the more
general cognitive approach, in which general learning mechanisms and
general cognitive architectures-that is, non special purpose networks-
do the learning. Instead of interpreting language learning to be a matter
of specialization of an already linguistic organ, it is more natural on the
PDP model to interpret it to be the product of a progressive construc-
tion of intermediate properties which simplify the language learning
problem but which might apply to domains beyond language. Net-
works often succeed because they build intermediate representations-
representations of properties that simplify the learning task. If these in-
termediate properties or representations are also found in networks
learning in different domains, we have a prima facie argument that net-
work learning of language refutes innatist views of language.

The argument must be called a prima facie argument because given
the importance of what appears to be domain specific assumptions
made in designing POP experiments we may well question why we
should believe that PDP language learning studies are free of domain
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specific constraints.The popular reason is that the PDP design assump-
tions required for studying language learning are no different, in prin-
ciple, from the PDP design assumptions made for studying learning in
other domains. Presumably, the same type of assumptions would have
to be made in designing a network to learn English grammar as would
have to be made if the network were to learn a function in logic, audi-
tory perception, or motor control. They are generic assumptions. The
networks are not gerrymandered or handcrafted, and the learning rule,
number of repetitions, and diet are in some sense standard as well.
Even if language learning requires bigger networks than do those for
bird song learning, or furniture categorization, the networks are just
bigger versions of the same sort. Thus, runs this argument, if, one day,
a network were in fact trained to judge English grammaticality, on that
day we would have strong evidence that innate knowledge of language
is not a prerequisite for language acquisition. PDP learnability of lan-
guage would serve as an existence proof that specific domain knowl-
edge is not necessary for language learning.

Now if this is a sound argument certain consequences follow that are
methodologically significant. First, PDP leamability would show that
poverty of the stimulus arguments about a given domain are false. The
thrust of all such arguments is that certain functions are not learnable
because the available data do not contain enough structure to deter-
mine the relevant function. Accordingly, such functions are deemed
unlearnable by inductive methods alone: additional domain specific
knowledge is required. This is the central argument generative gram-
marians have offered in support of their belief that 'the child must come
to the language learning task with inborn constraints about the possi-
ble form of linguistic rules' 2 or 'with a schema of some sort as to what
constitutes a possible natural language'. 3

In overthrowing poverty of the stimulus arguments, it is natural to
embrace a research strategy that looks for previously unrecognized
sources of linguistic information. These new sources of information
may be located in the way examples are ordered in the training set, in
the distribution of examples found in the set, in the frequency with
which particular examples occur, or in properties of the context of us-
age. The methodologically salient point is that whatever the source, this
extra information is available through experience. There is more struc-
ture present in the data confronting subjects than is apparent a priori. It
is not surprising, then, that much PDP natural language research is de-
voted to uncovering the learning potential of novel sources of linguistic
information. 4

The second consequence of rejecting the need for innate knowledge
of a domain is that we may substitute experiments in learnability for
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antecedent analysis of the domain-at least in the first stages of research.
Because a function may be learned by a PDP system whether or not we
already have a comprehensive theory of the function, it is not necessary
to spend long hours in analysis before we set our net to learn it. One of
the greatest differences between PDP approaches to language learning
and innatist approaches is that innatists begin with a characterization of
adult grammar and work backward to figure out how the child might
arrive at this 'steady state' characterization. 5 PDP and other more pure-
ly empiricist approaches work forward from the existing data about chil-
dren's linguistic behaviour to some characterization of adult language.
It is easy to imagine, therefore, that PDP theories of the 'steady state', if
such a community wide state even exists in their scheme, will be quite
unlike theories of the steady state put forward in the generative
tradition.

Genuine success in this methodology would mark a strong victory
for bottom up research. At present, the best articulated and most widely
admired method of cognitive research is the top down approach of Dav-
id Marr. In this methodology formal specification and mathematical
analysis take place before computational modelling. The prime defence
of this top down style of research is an a priori argument: without ante-
cedent analysis computational modelling can be no better than blind
wandering in mechanism space. A priori, the chance of striking on a
plausible biological design, one that might explain what we know of an
organism's behavioural capacities, is simply too small to warrant at-
tempting a search in design space undirected by prior formal analysis
of the task. No general search techniques, no weak methods, can suc-
ceed. Against this negativism, the promise of PDP research is that if it
can deliver a few striking empirical successes-cases where a plausible
design has been found by using a general learning rule- we have a good
reason for being optimistic that the search in mechanism space can be
made tractable. The net effect might be to reset the agenda of a large,
currently intransigent group of cognitive scientists.

With such weighty consequences at stake, it is worth exploring care-
fully what PDP learnability may teach us about innate knowledge. My
main concern in what follows is with the logic of the argument: vis. that
a display of PDP learnability constitutes an existence proof of inductive
learnability. I will use language acquisition as my focal domain because
it is an area so widely discussed. But it is incidental to the main point.

It seems to me that the heart of the anti-innateness argument requires
a clear understanding of what the phrases domain specific knowledge and
domain independent knowledge mean. PDP learning is meant to be an ex-
ample of domain independent learning-learning that proceeds without
the help of additional domain specific constraints or domain specific
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knowledge. If I am right, the concepts of domain specific and domain
independent are too ill understood to bear the weight of the innatist
non-innatist rhetoric normally associated with them. Accordingly, I
doubt that the agenda of most cognitive scientists will be reset by a few
PDP success stories.

The paper is divided in three. In part I, I reconsider some arguments
deriving from Gold's theorem purporting to show that PDP learnability
could not possibly disprove the need for innate knowledge of language.
Gold showed that it is impossible to learn a context-free (or more pow-
erful) language purely on the basis of data about grammatical sentenc-
es- a form of data that is usually called positive evidence. The learner
must have access (at least tacitly) to additional information. In princi-
ple, this information could come from many sources. But, typically, the
theorem is used to justify the belief that the relevant extra information
is innate and is specifically about the formal structure of language. I be-
lieve this is a mistake. But many innatists see Gold's theorem as a logi-
cal obstacle to anti-innatism-PDP inspired or otherwise.

In part II, I begin exploring in greater depth some of the hidden com-
plexities behind the notions of domain specific and domain indepen-
dent knowledge. Part of the confusion enshrouding these ideas can be
traced to the equally problematic notions of problem structure and task
environment. I discuss some problems with these in Part III.

What Should We Learn from Gold's Theorem?

In 1967, Gold posed the problem of language learning in formal terms. 6

The field of language acquisition has never been quite the same since.
Gold asked the question: under what conditions is it possible to learn
the correct context free grammar of a language given a set of training in-
stances? His most significant result was that it is impossible to learn the
correct language from positive examples alone. If a blind inductive pro-
gram is given an infinite sequence of positive examples, the program
cannot determine a grammar for the correct context free language in
any finite time. The data underdetermine the language. If learners are
to induce correctly, they must have access (at least tacitly) to additional
information.

The simplest source of this information is an informant who can tell
the learner whether or not a given string is grammatical. By using these
extra negative examples the program can eliminate grammars that are
too general. If 'negative evidence' is unavailable the language may still
be learned but the additional information must come from different
sources.
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Gold's result is thought to be relevant to human language learning
and, therefore, to PDP research into language learning because there is
a body of literature maintaining that negative evidence is not available
to children. 7 Parents do not intentionally speak ungrammatically to
their children, each time pointing out that this is the way not to speak.
Nor, apparently, do they tell their children, either directly or indirectly,
when the child itself is speaking ungrammatically-not in any pervasive
way. They are more concerned, it seems, with the truth or appropriate-
ness of utterances than with grammaticality per se. But then, because
there is no substantial negative evidence to stop the child from choosing
a grammar that generates a superset of the sentences in its mother
tongue, children ought to overgeneralize wildly. They ought to be dis-
posed to believe the grammaticality of sentences outside their lan-
guage. For without additional constraints on what their mother
grammar is like, children have no reason to reject sentences consistent
with everything they have heard but which nonetheless lie outside their
language. The psychological implication of the theorem, then, is that
because children either do not overgeneralize wildly or are able to recov-
er from overgeneralization, they must have access to additional infor-
mation about their language that has nothing to do with negative
information.

Gold's theorem has often been taken as supporting innatists in their
belief that the extra information about language must be inborn. 8 Part
of this belief is justified on the grounds that linguistic knowledge is so
specific; linguistic properties seem to resemble little else. Thus, when
Chomsky suggests that there are biological constraints on the kind of
grammars children will conjecture he has in mind constraints on the
sort of basic entities or categories-the parts of speech-children will con-
sider trying out in rules of grammar. There may be analogues of such
sub-recursive structures in other cognitive domains, but it is not obvi-
ous where. And when it comes to constraints on the way those entities
or categories can be combined, transformed, or removed, it is even less
clear that there are other cognitive domains (universally learnable)
which have as much structure.

To take a simple example, a child is assumed to be able to detect at an
early age that its linguistic community is using subject-verb-object
word order. The abstract categories of subject, object, and verb are not
inferred from observed regularities, it is said, they are innate. More pre-
cisely, the child is innately predisposed, at a certain stage of maturity,
to represent linguistic data in structural fashion. This quite naturally
simplifies the learning problem, for it allows that the input which
serves as data for learning language comes in a preprocessed form. Lan-
guage acquisition starts only after these abstract categories are
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represented by the child. They are called abstract because 'their bound-
aries and labeling are not in general physically marked in any way;
rather, they are mental constructions.' 9

According to innatist doctrine, language acquisition is further simpli-
fied by additional constraints that come into play when triggered by
certain discoveries. Thus, once a child notes its language has S-V-O
structure a set of triggers are fired-or parameters set-concerning relat-
ed assumptions, such as that the language is not inflected.

Now because of all these constraints 10 on how children conjecture
grammars the class of learnable grammars is an immensely reduced
subset of context free grammars plus transformations. Only certain
grammars are possible starting places, because only certain grammars
will satisfy the framework of rules and principles and, because of addi-
tional constraints, only certain grammars are accessible at any point.
Universal grammar, therefore, constrains the possible trajectories of
learning as well as the space of learnable grammars.

Needless to say, one of the most unpalatable aspects of the strong in-
natist position is the very specificity of the framework of rules and prin-
ciples. In order to combat this view and to show that stable grammars
are learnable without such specific assumptions about the nature of lin-
guistic structures and representations, PDP oriented linguists have
sought new sources of empirical information about language.

From a PDP perspective, where might this extra information come
from? Two empirical sources are obvious candidates: observable facts
about the communicative context and spoon-feeding the child a special
diet of sentences to learn from. Let us briefly consider each in turn.

The first conjecture is the most obvious: in early phases of language
learning parents tie many of their utterances to visible circumstances. If
a child were to assume that what it hears at first relates to the structure
of the visual scene in front of it, then it has extra information about the
content of the utterance. No one of any linguistic persuasion, to my
knowledge, has seriously denied that the context of utterance supplies
valuable information to learners of a language. Ostension is an integral
part of language learning. The mystery which all admit is to explain
how the structuring process in visual understanding, or auditory un-
derstanding, 11 might effect the structuring process in language under-
standing, Indeed how are the two related at an abstract level?

One suggestion, by Langacker, 12 is that the child has structural sche-
mata to help it parse visual scenes into comprehensible structures. If the
structure of visual scenes is somehow mirrored at some level in the
structure of the linguistic representations of those same scenes, then the
child has specific information about linguistic structures that goes be-
yond positive examples, for it has pairings of <meaning sound> or, at
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any rate, additional information about the meaning of certain utteranc-
es. As attractive as this suggestion is, at this stage, convincing neuro-
psychological details of the alleged linkage between scene parsing and
linguistic parsing are absent. We suspect that visual scene parsing
might be related to either syntactic or semantic structure because we
currently believe that almost 50 percent of the brain is devoted to visual
processing; that somehow vision and speech are linked since we can say
what we see; and that lesions to the visual cortex can have surprising
effects on speech abilities. 13 But we have no detailed accounts of how a
child might use information about visual context to bootstrap its way to
a rough grasp of syntax for even directly referential sentences. More-
over, assuming such accounts are one day provided, they still will not
serve as proof that context plus positive instances suffice for language
learning unless two other conditions are proven: (1) that a child can rec-
ognize and treat as special the communicative context without having
to be taught that fact using language; and (2) that no information be-
yond knowledge of context is required to overcome the insufficiency of
positive information alone.

In the absence of a formal proof of (2), a PDP demonstration of lan-
guage learning on the basis of context and positive examples would
only be suggestive in establishing their sufficiency for some languages
and some data sets. Aside from the need to undertake enough mathe-
matical analysis to generalize the result to many languages and many
naturally occurring data sets, there remains our initial concern that PDP
learnability is not itself an existence proof of inductive learnability, be-
cause so much information is potentially hidden in the design of the
PDP experiments. PDP learnability cannot establish that no language
specific knowledge is required for language learning until its own de-
sign assumptions have been shown to be language independent.

The case is no better with the second possible source of extra informa-
tion - distributional properties of positive examples and/or the fre-
quency with which they are repeated. If sentences are presented in a
controlled manner (simple sentences being presented before harder
ones) with the choice of the next sentence to be presented determined
by a teacher aiming to push the student on to the best next grammar,
might it not be possible to converge on an acceptable grammar?

Perhaps spoon-feeding will work. We already know that for context
free grammars a careful diet of positive examples can guarantee con-
vergence on the correct grammar. For it has been proven that, for sto-
chastic context free grammars, 'if the training instances are presented to
the program repeatedly, with the frequency proportional to their prob-
ability of being in the language ... the program can estimate the proba-
bility of a given string by measuring its frequency of occurrence in the
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finite sample. In the limit, [this method of] stochastic presentation gives
as much information as informant presentation of positive and negative
examples: Ungrammatical strings have zero probability, and grammat-
ical strings have positive probability.' 14 To date, however, this proof
has not been generalized to harder than context free grammars (e.g.,
context sensitive, or unrestricted rewriting grammars).

When formal proof is absent empirical success is informative. A PDP
network which learns a natural language when trained on a careful diet
of positive examples will, not surprisingly, be received with consider-
able interest. But as with claims about structure from context, experi-
mental demonstration of language learning can at best establish the
possibility of learning certain languages in certain circumstances. It is
an existence proof that there are languages and data sets that can be
learned by PDP networks. The trick is to show that this result general-
izes to all naturally learnable languages (or that the conditions of learn-
ing English or French are isomorphic to the structured data sets used in
successful simulations), and that the assumptions built into the design
and learning rule of the successful PDP system are domain indepen-
dent. In short, it is necessary to show that PDP experiments in language
learning do not presuppose the very assumption they wish to test: that
specific knowledge of language is necessary for learning. It is time now
to turn directly to the question of what domain specificity means.

What Is Domain Specific Knowledge?

In AI, the notion of domain specific knowledge became familiar with
the development of expert systems where an explicit distinction was
drawn between the general principles of reasoning built into an infer-
ence engine and the collection of problem specific facts, goals, and pro-
cedures that serve as input to the inference engine. In the simplest case,
the inference engine is simply a box for deriving deductive conclusions.
Domain knowledge might include premises such as all people are mor-
tal and that Socrates is a person. The output would be the conclusion
that Socrates is mortal. In slightly more complex cases, domain knowl-
edge might include premises plus control knowledge to reduce the
search of the logic engine, because, given a set of axioms as input, it may
take an enormous amount of undirected search of theorem space to lo-
cate the sought for conclusion. In still more complex cases, the inference
engine itself might be made more powerful, capable of drawing induc-
tive or even abductive inferences. In this last case, the engine conjec-
tures hypotheses to explain the input data. Language learning as
portrayed in the parameter setting model can be interpreted in this light
if we take as the data to be explained sentences about a language, and
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Figure l0.l.Input about the linguistic data available to children is fed into an abductive
inference engine—labelled learning mechanism in this picture—along with constraints
on possible hypotheses taken from the theory of Universal Grammar (UG). The job of
the learning engine is to generate a grammar consistent with data and constraints. Gl,
G2, G3, and G4 are successive conjectures of that grammar. In reality the information
present in UG may be built into the learning mechanism. But the contribution of UG
is logically extractable and so is represented as a separate input.

add to that data additional inputs concerning the type and range of
plausible conjectures and interparameter constraints. See Figure 10.1.

The AI distinction between domain specific and domain independent
is not a rigorous one. The intuition appealed to is that a piece of infor-
mation is domain specific if it is not useful or applicable in many differ-
ent domains or many different types of problems. General strategies for
deduction, induction, and abduction, then, as well as general strategies
for search, sorting, and classifying normally fall on the domain inde-
pendent side. On the domain dependent side, we expect to find special-
ized search control knowledge, metrics on goodness and so on, and
factual data about the domain entities and their relations. Let us see if
this intuitive idea can be tightened up.

General Cognitive Resources Versus Domain Knowledge

To begin, consider why we normally suppose there is a difference be-
tween general computational or cognitive resources and domain knowl-
edge. Chomsky has long drawn a distinction between linguistic
competence-the system of knowledge an agent has about the grammar
of its language- and linguistic performance-the system of linguistic be-
haviours an agent displays. According to the doctrine, linguistic perfor-
mance inevitably falls short of displaying a speaker's full competence
because real agents have limited memory, calculating speed, and
awareness, in short, limited general cognitive capacities.15 It is these re-
source limitations, not knowledge, which explains why we find people
revealing deficits in comprehending sentences with embedded clauses
and the like.

Central to the competence performance distinction, then, is the idea
that these performance deficits are general and have nothing to do with
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linguistic domains in particular. Computations have costs, and these
invariably become reflected in performance. Let us look at this differ-
ence between computational resource and domain knowledge more
closely.

Classically, computational resources are the primary quantitative fea-
tures of a computation. The amount of short and long-term memory
used, or the number of steps required to calculate an answer, are stan-
dard resource attributes of computations. They are measurable aspects
of a process. Knowledge, by contrast, is a qualitative feature 16 of both a
computational process and a computational system. In setting up a sys-
tem to perform a given computation, knowledge of the algorithm driv-
ing the computation must be installed. If this algorithm is correct the
system can be interpreted as containing knowledge of this procedure as
well as knowledge of certain aspects of the problem domain it was de-
signed to work on. This latter knowledge need not be explicitly repre-
sented anywhere in the system, and indeed is usually thought to be
implicit knowledge of facts about the domain that are responsible for
the algorithm's success. Knowledge of the algorithm and its success
conditions tend to remain constant throughout a computation. But
most of the remaining knowledge in the system is explicit and tends to
change moment by moment as the computation unfolds. Thus, at the
outset of a problem, a system may have explicit knowledge of the input
of the particular problem instance it is to solve. For example, it may
know explicitly that its current problem is to derive the cube root of 125.
At the close of the computation, it explicitly knows that the answer is
five. 17 The trajectory of explicit knowledge states in between is a func-
tion of both resources and algorithm.

Owing to the difference in nature between resources and knowledge,
it is usually possible to distinguish limitations in processing capacity
due to a shortage of resources from limitations due to shortages of knowl-
edge. Shortages of resources, unlike shortages of knowledge, typically
show up as a system tackles problem instances of larger size. For in-
stance, a system endowed with the right (algorithmic) knowledge to
calculate cube roots should be able to compute the correct answer for
any sized cube. But, of course, as the size of the input number grows,
there inevitably comes a point where either more memory is required
or more time is needed than is available. The knowledge sufficient to
compute these larger numbers has not changed; so there is no need to
add additional knowledge, although this would help. The problem,
rather, is that the system has run out of resources.

Shortages of knowledge, unlike shortages of resources, typically
show up even on the smallest problems. A system that does not know
how to calculate cube roots is no more likely to hit on the correct answer
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for a small number than a large number. Its success is random with
respect to number size. Furthermore, the addition of knowledge, unlike
the addition of resources, need not improve performance in linear or
even in monotonic fashion. A system missing just one crucial piece of
knowledge may perform no better than a system missing several pieces.
By contrast, additions to memory or computing time characteristically
improve performance monotonically.

The upshot is that changes in resources seem to have domain inde-
pendent effects, either increasing or decreasing performance across do-
mains-while changes in knowledge seem to have domain specific
effects-either increasing or decreasing performance on specific
problems.

This correlation becomes even more robust when we consider how a
system might compensate for a loss of knowledge as compared with
how it might compensate for a loss of general memory or allotted time.
A reduction in memory or processing time can be accommodated on
any specific problem simply by adding more assumptions-knowledge-
about that problem's solution. As more information is made explicit
about the answer set, less computation is required. This follows be-
cause, at bottom, computation is nothing more than the process of mak-
ing explicit information available in an implicit form in a complete
specification of the problem. For any particular problem, then, knowl-
edge can compensate for resource loss. But no amount of additional
computational power can make up for a knowledge poor system. If
there is not enough information in a complete specification of a prob-
lem to determine an answer set, the problem is ill-posed, and no
amount of cleverness in search or of additional brute computation
can compensate. The answer is not implicit in the problem. Hence,
resources cannot compensate for lack of domain knowledge.

Domain knowledge, on this account, is primarily about the problem
to be solved: the kinds of entities that can serve as answers to problems,
their range of values, and facts about the particular problem instance.
This knowledge is necessary if the system is to have a clear idea of the
problem. Successful systems will have additional knowledge about po-
tentially useful algorithms and, possibly, why they succeed. If the
knowledge in this algorithmic component is heuristic, it concerns meth-
ods, hints, and ideas that can reduce search. In principle, it is not essen-
tial and its loss can be compensated for simply by generating more
possible answers and testing them for correctness. To do this requires
knowledge of what can serve as a candidate answer and the conditions
a correct answer must satisfy-that is, essential knowledge of the prob-
lem. Accordingly, it would be more precise to say that resources cannot
compensate for non-heuristic knowledge loss.
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We now can operationalize at least part of the intuitive notion of do-
main specific knowledge as follows:

A bit of knowledge is domain specific if its loss would have an irremediable
effect on task performance. No amount of additional memory or time is able
to bring performance back to its prior level.

Because this definition does not cover heuristic knowledge, which is
widely understood to be knowledge of domain regularities necessary
for converting weak methods to strong methods, I shall call it essential
domain knowledge.

On the assumption that this operational definition captures one im-
portant aspect of our intuitive idea of domain specifity, let us try apply-
ing it to the assumptions built into PDP experiments.

Recall the nature of the PDP design problem. Working from a more
or less careful account of a problem-for example, learn phrase structure
grammar from a given set of positive examples -the PDP designer must
choose an appropriate network type, topology, number of hidden units,
momentum factor, ordering of the data, number of trials, and so forth
that s/he believes will succeed. To inform his/her choices s/he will
make certain assumptions about the order, smoothness, regions of
greatest interest and so on of the function the network is to learn (hence-
forth, the target function).

How are these assumptions embodied in PDP systems? The order of
the target function correlates with the number of hidden units, that is,
space; the smoothness of the function correlates with the number of
times the data set is trained on 18, that is, the time the leaning rule is to
be run; the regions of greatest interest correlate with the distribution of
samples in the data set, that is, with factors external to the computation,
and the choice of net type-feedforward, Boltzman, fully recurrent, and
so on-correlate with the type of function (associative, predictive), that
is, with the structure of the network itself. In short, at least two of the
assumptions built into PDP experiments-assumptions of the order and
smoothness of the target-which, on the surface, appear to be domain
specific, fail to be so according to our operational definition of essential
domain specificity because there is a correlation between resource and
knowledge.

What, then, are we to say about the status of these assumptions? If it
is true that in PDP systems one of the ways to embody knowledge
about the target function is by altering the resources available for com-
putation, for instance, by adding (memory) units, or by adding to train-
ing time, we seem obliged to regard much of the design knowledge
built into networks as being domain independent.
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Admittedly, there remains the possibility that this knowledge is heu-
ristic knowledge; it is not essential domain knowledge, but, nonethe-
less, domain specific. However, I doubt that this can be correct. First, if
choice of number of hidden units were important for efficiency only,
and networks with the wrong number of units were capable of learning,
(only less likely to do so on any given learning attempt), then it ought
to be possible in principle to learn arbitrary functions even in networks
with few units. But we know from Minsky and Papert's analysis of per-
ceptrons 19 that this is false. Second, if the choice of the number of learn-
ing trials were merely of heuristic value, it ought to be possible to learn
functions of arbitrary smoothness. Yet, as is well known, the smooth-
ness of a function cannot be estimated reliably from noisy data. It is a
desideratum which must be set. But then number of learning trials, like
number of hidden units, is not merely heuristic knowledge, it is essen-
tial knowledge, for it effects the very way we understand the problem.

Should we reject our operational definition of essential domain
knowledge, or should we reject the idea I have been tacitly assuming all
along, that choice of hidden units and trial repetitions is domain depen-
dent, that is, domain specific knowledge? My inclination is to drop the
definition. In fields like econometrics, where statistical estimation of
target functions is the stuff of life, the shape of the target (e.g. y =ax3 +
bx 2 + cx + d or yt = ayt_ 1 + b) is drawn from the theory of economics.
The econometrician 'relies heavily on a priori knowledge [drawn from]
economic theory.' 20 These assumptions are not merely heuristic; they
are necessary to an adequate specification of the estimation problem.
But, then, are they not as domain specific as assumptions can be? If do-
main specific knowledge is necessary for statistical estimation of func-
tions in econometrics, why would it not also be necessary for PDP
modelling of cognitive capacities, which is also interpreted as a mecha-
nism for estimating functions? Let us try another tack at making more
precise the intuitive notion of domain specific knowledge.

Transparency of Domain Knowledge

Why do the assumptions made in the language learning models of
generative linguistics seem to be domain specific? One easy answer is
that those assumptions transparently refer to entities, facts and regular-
ities of languages. Parameter setting models are based on the theory of
UG (universal grammar) which adverts to structural descriptions of
sentences, to constraints on transformations between those essentially
linguistic structures, and to entities or notions such as bound anaphor,
which are undefined outside of language studies. Parameter setting
models are transparently about language because the concepts
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mentioned in these language learning models cannot be readily di-
vorced from language. One could define a set of mathematical structures
that are isomorphic to the structures discussed in generative linguistics
and so convert linguistics into a branch of mathematics that now is
about formal structures rather than human languages. But these formal
structures are not motivated by extra-linguistic considerations. They are
solely motivated by the study of language. Thus, it is not an accident
that there is an independent mathematical theory of tree structures, but
not of phrase structures or bound anaphors. These last are too idiosyn-
cratic. (See Figure 10.2.)

It is worth putting this argument in simpler terms. What makes a set
of assumptions specific to a domain is that those assumptions are about
entities and structures that are special to that domain. They are not gen-
eral mathematical entities, such as functions or graphs, which have gen-
eral application to many fields. They are highly specific and
idiosyncratic-so idiosyncratic that the only natural way of talking
about those entities and structures is in the terms developed in the em-
pirical domain to which they belong. Non-generality of structure natu-
rally leads to transparency of discourse.

Thus we have a new definition:

Knowledge is domain specific if it transparently refers to entities and facts
that are not general or generic but, rather, specialized and idiosyncratic to the
domain in question.

On this account, PDP based theories of language learning, based as
they are on assumptions about the form, style and size of networks

Figure 10.2: The space of possible human languages may be conceived of as a partition
on unrestricted rewrite grammars. But whereas there are independent mathematical
reasons for supposing there is a genuine family of functions called context free gram-
mars, there are no such reasons motivating the family of functions called possible
human grammars. The partition is idiosyncratic. If there were no such structures as
natural human languages to study and describe, it is unlikely mathematicians
would regard such a class as a coherent family.
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needed to instantiate certain linguistic functions, the learning rule, the
kind and distribution of data it will be trained on, and the number of
times the data will be sent through, mention nothing that is transparent-
ly about language. Virtually the same assumptions could apply, for all
we know, to auditory processing, linguistic processing, or visual pro-
cessing; and the very same network and learning rule, if fed different
data, could be used to learn other functions. So, prima facie, language
learning networks do not contain knowledge about the linguistic do-
main per se; they contain knowledge about the formal properties of cer-
tain functions. Hence, PDP learning models contain no domain specific
knowledge.

As reasonable as this argument may seem there is at least one good
reason for not accepting it: descriptions do not have to appear to be
about the objects they refer to in order to actually refer to them. Trans-
parency of reference cannot be necessary for domain specificity.

The argument for non-transparency is familiar in philosophical cir-
cles. Descriptions may be referentially opaque. It is possible to refer to
the actions of a pocket calculator as the manipulation of numbers rather
than as the manipulation of numerals or electric currents and to the
field of physics as whatever physicists study. The common feature of these
descriptions is that they refer indirectly. They seem to be about one
thing- numerals, electric current, the actions of physicists-but, in fact,
refer to entities that are more directly designated by other expressions-
numbers, quarks, and force fields.

But then we can grant that transparency can serve as a sufficient con-
dition for knowledge being specifically about a domain yet deny that it
is a necessary condition. It is entirely natural that descriptions of net-
works and data sets appear to be about networks and data sets, and that
the assumptions going into the choice of an architecture seem to be
about the order and shape of the target function-yet they nonetheless
refer to assumptions about linguistic properties and structures. Trans-
parency of reference is not necessary for domain specificity.

Evidently neither referential transparency nor the difference between
competence and performance can serve as an adequate basis for deter-
mining if a given body of information is domain specific or not. I want
now to consider another line of thought: information is domain specific
if it is nomologically tuned to the regularity of a domain.

Law-like Attunement to Domain Regularities

Consider once again parameter setting models. Perhaps the strongest
reason for regarding parameter setting models of language acquisition
to be so clearly about language specific entities and facts is that every
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accessible parameter setting in one of these theories defines a possible
language-a possible human grammar. Parametric space somehow mir-
rors linguistic space. The intuition here is that the parametric frame-
work is perfectly tuned to the structure of human language. 21 This
means that the assumptions that are built into a parametric model are
not just about English or French or a few other natural languages-that
is, particular examples of the language learning task. They are about any
language that a human now or in the future could speak-that is, any ex-
ample of the task. All and only possible human languages are definable
as vectors in parameter space. No non-human languages are describ-
able. (See Figure 10.3.) Thus, what makes parameter setting models
seem to be about human language rather than, say, about some formal
game, is that they are tuned to the possible-not merely the actual. The
formalism of parametric theories is (supposed to be) perfectly adapted
to language. It is related in a lawlike way to language because it captures
what is essential to language-the constraints on possibility.

The idea here is that the way to decide whether a system has knowl-
edge about a given domain and not about some other domain is to con-
sider the counterfactual implications of the assumptions it embodies.
There is a familiar precedent for this. The normal way of deciding
whether a person has a particular concept-say, the concept of cup-is to

Figure 10.3: In this figure each dimension refers to a parameter. Whether some of these
parameters are continuously tunable, discretely tunable, or have just two settings (on,
off), and whether the total number of parameters is fixed by the time the child has
bootstrapped to the parameter tuning phase, is currently a matter of dispute. As the
child learns more about its mother tongue it shifts its position in parameter space.
Thus each possible grammar the child entertains can be represented as a vector in pa-
rameter space. It is a further assumption of UG that there are constraints between pa-
rameter settings, so that not all vectors are possible. Only certain points are accessible.
The points V1, V2, and V3 represent a sequence of grammars the child has
conjectured.
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see if he or she calls all cups cups and then to see if s/he is disposed to
go on to use cup in the right way in the future. Shown cup-like objects
s/he has never before seen, a person must classify them the way people
who we agree understand the term would also classify them. That is,
we assume concept owners have the right counterfactual dispositions.
It is this counterfactual ability that is thought to distinguish
coincidental connection from lawlike connection. It locks the concept to
its referent.

We can state this condition on domain specificity as follows:

Knowledge is specific to a domain if it is connected in a law-like way to the
possible entities and structures of that domain,

Although we cannot use this as an operational definition of domain
specific knowledge unless we can decide when the elements of knowl-
edge are connected to entities in a lawlike way, we can still put to use
the idea that assumptions built into a computational system are domain
specific or task specific when they are exactly tuned to the properties of
the task. For instance, we can ask what conditions a network would
have to satisfy to be counterfactually attuned to language in just the
way parameter setting models are. If we were to discover that success-
ful language learning networks satisfy these conditions, then we would
have reason to suspect that the assumptions that go into their design are
equal in size and specificity to those built into parameter setting mod-
els. If we think the one has domain knowledge built into it, we ought to
believe the other has it too.

Here, then, are the conditions on a networkese version of a parameter
setting model.

(1) There is a well defined family of networks N0-the class of net-
works pre-tuned to the structure of human languages-that have
the appropriate design to learn any human language when sub-
jected to the same type of linguistic data as are human children.

(2) The trajectory of grammars (system of linguistic behaviours)
these networks would describe as they converge on the steady
state grammar mirrors that of human children. That is, when
learning human languages, these networks are constrained to
pass through phases or stages of behaviour that duplicate those
which children pass through. Only certain grammars can be
tried out in the course of learning. The learning rule, therefore,
must be such that when coupled with the data set it issues in
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'stable points' -regions of current best estimate of the best func-
tion fitting the data-that mimic allowable vector trajectories in
parameter space. Each of these stable points represents one of
the possible grammars the child is trying out. It is a grammar of
a possible natural language.

If the choice of architecture, learning rule, diet, number of epoques,
and the rest are as constraining to network and network trajectory as (1)
and (2), I cannot see how anyone can deny that network models of lan-
guage contain domain specific information, and that N0 , in particular,
has as much information about language as does a parameter setting
model. That would settle the question once and for all as to whether
PDF networks have domain specific knowledge in them.

Once more, however, the matter is not so easily resolved. There is at
least one good reason for supposing that the assumptions that go into
choice of architecture, and so on, are not, in fact, this constraining. Gra-
dient descent methods, such as backpropagation, are too sensitive to
initial settings of the weight vector to expect all paths leading to stable
grammars to be similar. The same network starting from slightly differ-
ent intializations could describe substantially different trajectories. The
same is true if we are comparing the trajectory of different networks in
N0: each will have its own idiosyncratic path from initial to final state.
Moreover, gradient descent methods are weak methods; there is no
provision for extra control information 22 of the sort that would overrule
choice of the steepest descent. As a result, there is nothing to prevent
networks from trying out weight vectors that have no counterpart in
parameter space. They are not prohibited from temporarily settling on
intermediate representations and subfunctions in their inductive search
for the steady state grammar just because those representations or sub-
functions are not linguistically 'natural'. From the network's vantage
nothing is linguistically natural or unnatural. The learning rule is
domain independent.

Here again is an argument for less innate domain knowledge. But
note, it cannot be an argument for no domain knowledge. For, in the
phrase 'counterpart in parameter space', we are making tacit reference
to an interpretation function that maps vectors in weight space to expres-
sions in another more linguistically transparent formalism. If we could
agree on such a formalism, we could apply it to the initial conditions of
the entire family of successful PDP language learning networks and
look for invariants. Accordingly, in my opinion, the interesting ques-
tion PDF studies of language learning raise is not how much of language
is innate but what about language is innate.
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To solve this will require agreeing on an interpretation function for
language learning networks. One major source of dispute among PDP
oriented linguists and generative linguists is over what the appropriate
linguistically transparent formalism should be. It is fairly clear that some
such formalism is necessary. For if there were not some way of inter-
preting the linguistic information in networks, there would be no way
of knowing whether two different networks converge on the same
grammar or on different grammars. Similarly there would be no way of
knowing if there were any interesting linguistic information present in
the starting state of all successful networks. It would not even be possi-
ble to derive linguistic generalizations from studying families of suc-
cessful networks. So settling on an interpretation function is essential to
PDP linguistic studies. But it also throws us right back to the question
of what constitutes the domain of language-a question which some see
as the defining question of the empirical field of linguistics.

Conclusion

I have been considering some of the problems undermining efforts to
use PDP simulations of language learning as existence proofs that in-
nate knowledge of language is not necessary for language learning. Vir-
tually all parties to the dispute agree that some knowledge or some
learning strategies must be innate, but there has been widespread dis-
agreement over how domain specific that innate knowledge must be.

I tried to elucidate the notion of domain specificity by appealing to
reasonable intuitions which we all have. We think that there is a genu-
ine difference between cognitive limitations brought on by scarce cog-
nitive resources and cognitive limitations due to insufficient
knowledge. A difference, moreover, that might clarify the meaning of
domain specific. But when applied to PDP style architectures, this dis-
tinction proved parochial.

I then tried linking domain specificity to referential transparency: an
assumption is about a specific domain if the entities and structures it re-
fers to are idiosyncratic-highly specialized. The more specific the enti-
ties the fewer the domains those entities could belong to. Assumptions
about those entities, therefore, would have to be about a rather specific
domain. This intuition, I granted, could serve as a sufficient condition
for domain specific knowledge, but it was too exclusive to be a neces-
sary condition. PDP systems might be built on more generic assump-
tions about functions and so forth and yet incorporate domain specific
knowledge.

This led me to my final intuition that an assumption that is built into
a system carries information specific to a domain if it is connected to
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entities in that domain in a lawlike manner. This has the virtue that
some assumptions can be about non-idiosyncratic entities. But it left us
grasping for a way of translating the assumptions built into a computa-
tional system into a transparent formalism. I argued that, because net-
works are not transparently about language, we must have an
interpretation function to map PDP design assumptions into expressions
in another, more linguistically transparent formalism-else we
could not determine what entities particular system assumptions
corresponded to.

The very question of linguistics is what should this formalism be. It
is the hope of PDP linguists that the way to discover this formalism is
by extensive PDP modelling. It is too early to say how successful this
approach will be. One thing we can be certain of, though, whatever the-
ory is eventually preferred, it will show that there is substantial infor-
mation about language in the initial states of language learning
networks. What I hope I have established is that this is not in itself an
interesting question-the real question is what is this innate knowledge
of language.

I want to close with an argument that should chasten anyone who be-
lieves that vanilla domain assumptions will suffice for PDP learnability
of language and that the vaunted power of PDP systems to learn inter-
mediate representations can do away with all but the most rudimentary
assumptions about language. In my opinion it is more likely that sub-
stantial innate knowledge of language-in particular, knowledge of the
constraints on intermediate representations - will have to be built into
PDP language learning systems, although as yet we have no settled idea
what this innate knowledge will look like and how it will play itself out
in the design of networks complex enough to learn natural languages.

The Need for Constraints on Intermediate Representations

In any multilayered PDP system, part of the job of intermediate layers
is to convert input into a suitable set of intermediate representations to
simplify the problem enough to make it solvable. One reason PDP mod-
elling is popular is because nets are supposed to learn intermediate
representations. They do this by becoming attuned to regularities in
the input.

What if the regularities they need to be attuned to are not in the in-
put? Or, rather, what if so little of a regularity is present in the data that
for all intents and purposes it would be totally serendipitous to strike
upon it? It seems to me that such a demonstration would constitute a
form of the poverty of stimulus argument.
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The example I wish to discuss is illustrative only. I have no reason to
suppose that it is especially analogous to the problem of language
learning. But it is consistent with the theoretical nature of much of gen-
erative linguistics.

Consider, then, the problem of representation posed by the mutilated
checkerboard (see Figure 10.4). The problem is a straightforward tiling
question: can dominoes 1 by 2 in size be placed so as to completely
cover an 8 by 8 surface with 1 by 1 regions missing from position (1 8)
and (8 1)?

To solve tiling problems in general requires substantial search. But as
is well known, we are able to quickly solve this particular problem by
treating the surface as a square checkerboard missing the opposite ends
of a diagonal. We can then exploit the familiar property that all tiles
along a diagonal of an n by n checkerboard will be the same colour.
Clipping the ends off a diagonal will therefore reduce the number of,
say, black squares by 2 while leaving the number of white squares con-
stant. Because each domino covers exactly one black and one white
square there can be no pattern of tiling to completely cover diagonally
mutilated boards.

There are several ways we might interpret this patterned Euclidean
space but the one I prefer treats checkering as akin to a geometric con-
struction. A legitimate geometric construction never violates the rules
of geometry. It adds additional structures, which, if well chosen, alter
the original problem situation by making explicit properties and con-
straints that were 'otherwise implicit. When such properties are felici-
tous they make discovery of the target property easier.

In checkering a board we are adding a structure to the bare statement
of the tiling problem. This structure is not in the input, so it is not induc-
tively inferable. It is a legitimate addition because the way a given space
will checker, and the set of properties that follow from checkering it, is
determined by the axioms of the space. But there are also an indefinite

Figure 10.4: Can dominoes be laid down so as to completely cover the board above? The
problem becomes trivial if we checker the board. We then note that there are two less
black squares than white squares. Dominoes cover one white and one black square.
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number of structures consistent with Euclidean geometry which we are
not considering, because they are irrelevant to solving the current prob-
lem. Choosing the right structure to add requires insight. Accordingly,
we ought to view checkering to be a hint or better, a facilitating property,
that lets us discover properties of Euclidean surfaces that would other-
wise be hidden.

What if the discovery of grammar requires the same felicitous addi-
tion of structure to the data of discourse? If such structure is consistent
with the data but not inductively derivable from it, then inductive en-
gines, such as PDP systems, might yet discover grammar by other more
lengthy methods but miss the quick discovery that comes from operat-
ing with the right hint. This is the spirit in which I interpret Chomsky's
arguments about the necessity of recoding the input of speech in
structured form.

Now, prima facie, there is no reason PDP networks cannot be de-
signed to bias recoding input in ways which lend themselves to discov-
ery of the best intermediate representations. But to do so requires
substantial prior analysis of the linguistic domain. The translation to
networkese may be as natural as constructing a net in phases, with the
global language learning problem broken down into tractable
subproblems, each assigned to separate nets to learn. Or, again, perhaps
the solution will involve creating low bandwidth linkages between ap-
propriately designed subnets. If either of these cases is close to the
mark, PDP theorists will have to enter the design phase with a tremen-
dous amount of domain specific information. For in such cases PDP the-
orists are not just concerned with the order of a function but with its
internal structure as well. That is, they must decompose the function
into a set of composable parts-each with its own order and so on-and
they must choose a way for the parts to interact.
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Notes

1 Strictly speaking, the language learning context is entered only after having
solved the bootstrapping problem. See Pinker, S. (1987). The bootstrapping
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problem in language acquisition. In B. MacWhinney, (ed.), Mechanisms of
Language Acquisition. Hillsdale, NJ: Erlbaum.

2 Pinker, S. (1989). Language acquisition. In M. Posner, (ed.), foundations of
Cognitive Science. Cambridge, MA: MIT Press, p. 370.

3 Wexler K. and P. Cullicover. Formal Principles of Language Acquisition. Cam-
bridge, MA: MIT Press, p. 4.

4 See Elman J. (1991). Incremental Learning, or the Importance of Starting
Small, Proceedings of 13th Annual Conference of the Cognitive Science Soci-
ety, 1991 Erlbaum, pp 443-448, for an example of PDP research dedicated to
uncovering new sources of linguistic information. Elman suggests that chil-
dren may suceed in simplifying their linguistic problem by searching, at first,
for grammaticality in restricted word sequences. Because attention span in-
creases over the early years, children are initially unable to attend to more
than a few words of a sentence. As their memory and attention grows they
are able to bootstrap to more realistic grammars providing they were suc-
cessful in assigning structure to the small sequences.

5 Chomsky put the matter this way: 'we begin by determining certain proper-
ties of the attained linguistic competence, the attained steady state SS. We ask
how these properties develop on the basis of an interplay of experience and
genetic endowment.' [From On Cognitive Structures and their Develop-
ment, A reply to Jean Piaget'. In M. Piatelli-Palmerini (ed.), Language
Learning: A debate between Noam Chomsky and Jean Piaget. Cambridge MA:
Harvard p. 48].

6 Gold, E. (1967). Language identification in the limit. Information and Control
10:447-474. Gold's theorem can be established only if we are explicit about:
(1) the space of possible languages, and the one which is the target; (2) the
type, order and frequency of information available to the learner which is rel-
evant to determining the correct language; (3) the learning strategy that tells
the learner how to create and change its hypothesis about the target on the
basis of data from the environment; and (4) a success criterion for deciding if
the learner has conjectured the target. Needless to say when any one of these
assumptions is made specific it may not resemble the true situation facing
natural language learners.

7 Brown R., and C.Hanlon (1970). Derivational complexity and the order of ac-
quisition in child speech. In J. R. Hayes, (ed.), Cognition and the Development
of Language. New York: Wiley.

8 It is worth noting that Chomsky himself does not appeal uniquely to Gold's
theorem. 'I have argued that we can, under an appropriate idealization, think
of the language learner as being supplied with a sample of well-formed sen-
tences and (perhaps) a sample of ill-formed sentences—namely, corrections of
the learner's mistakes. No doubt much more information is available, and
may be necessary for language learning, although little is known about this
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matter.' (Chomsky, 'Discussion of Putnam's comments.' In op. cit. Piatelli-
Palmerini p. 312.)

9 Chomsky, 'On cognitive structures and their development: a reply to Jean
Piaget.' In op. cit. Piattelli-Palmerini, p. 39.

10 The Specified Subject Condition-SSC-is a more complex example which
shows the type of innate constraints Chomsky has in mind that might oper-
ate on transformations. The SSC asserts, roughly, that no rule can apply to X
and Y in structures of the form ...X... [...Y...]... where X and Y are noun phras-
es and [...Y...] is an embedded sentence or noun phrase, if the embedded
phrase contains a subject distinct from Y. Under normal conditions the pairs
each of the men ... the others and the men ... each other are interchangeable with-
out substantial change of meaning. For example,

(1) Each of the men likes the other.
(2) The men like each other.
(3) Each of the men expects [John to like the others].
(4) The men expect [John to like each other].

But in some contexts this not true. Sentence (3) ought to transform to (4). But
(4) is neither synonymous with (3) nor even a well-formed sentence of En-
glish. The reason the transformation is blocked is that the embedded sen-
tence in (4) contains a subject John which is distinct from each other so that the
relation between X and Y is blocked by SSC.

11 See Bregman, A. (1990). Auditory Scene Analysis. Cambridge MA: MIT Press.
12 See, for instance, Langacker, R. (1986). Foundations of Cognitive Grammar. Vol

1, Stanford CA: Stanford University Press, and Lakoff, G.(1987). Women, Fire,
and Dangerous Things. Chicago IL: University of Chicago Press.

13 See Rubens, A. B. and A. Kertesz. (1983). The localization of lesions in
transcortical aphasias. In A. Kertesz, (ed.), Localization in Neurophysiology. Ac-
ademic Press, 245-68. Also see Sereno, M. I. (1991). Language and the Primate
Brain. Proceedings Cognitive Science Society, Hillsdale, NJ: Erlbaum, 79-84.

14 Clarkson, K. (1982).Grammatical inference. In Cohen P. and E. Feigenbaum,
eds. The Handbook of Artificial Intelligence. Vol. 3, p. 500.

15 A second, and in certain respects more attractive account of the competence/
performance distinction, is that performance regularities are the conse-
quence of the particular algorithm(s) driving language use and language
comprehension. The same knowledge of language—competence—may be
embedded in algorithms with different performance characteristics.

16 The distinction between knowledge as a qualitative property rather than a
quantitative property does not mean that there cannot be more knowledge
or less knowledge built into a system. It does mean, though, that we cannot
measure exactly how much, using a familiar quantitative scale. This restric-
tion applies because first knowledge is an attitude to propositions, and prop-
ositions are notoriously difficult to measure. Second, what a system is



322 Connectionism: Theory and Practice

thought to know can vary with context and, indeed, with what aspect of sys-
tem behaviour we are studying.

17 For a preliminary discussion of this idea, see Kirsh D. (1990). When is infor-
mation explicitly represented? In P. Hanson, (ed.), Information, Language and
Cognition. Vancouver BC: UBC Press.

18 Both the updating rule and the momentum associated with movement in
weight space can also effect smoothness.

19 Minsky M, and S. Papert, (1988). Perceptrons. Cambridge MA: MIT Press.
20 M. Dutta (1975). Econometric Methods. Southwestern, p. 10.
21 It is not clear that circularity can be avoided here. For if the defining feature

of a humanly learnable language is that it is consistent with Universal Gram-
mar (UG), and the meaning of UG is that it defines the space of humanly
learnable languages (the innate restrictions imposed by the language organ
on what languages humans might possibly learn) then it is analytically true
that UG is perfectly tuned to the structure of human languages. This is one
way of guaranteeing a necessary relation between UG and the domain of
language.

22 This is not literally true. Most backpropagation methods allow for a momen-
tum parameter whose job is precisely to slow the jerkiness of gradient de-
scent. That is, in order to prevent taking very short steps downhill that go off
in a different direction than one has been moving, an extra input is added to
make smooth transitions more desirable. But the point still stands that this is
not a flexible control method that allows backpropagation to make use of lin-
guistic information in its moment by moment choice of how to update
weight vectors.
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